Skip to main content Accessibility help

Epitaxial NiO nanocrystals: a dimensional analysis

  • Jeffrey Cheung (a1), Mahmut Baris Okatan (a1), Jivika Sullaphen (a1), Xuan Cheng (a1), Valanoor Nagarajan (a1), Yong-Lun Chen (a2) and Ying-Hao Chu (a2)...


We present the study of the synthesis of (001) nickel oxide (NiO) epitaxial nanocrystals grown on (001) strontium titanate (SrTiO3) single crystal substrates. Pulsed laser deposition of the bismuth nickel oxide (BiNiO3, BNO) perovskite precursor followed by post-deposition processing is carried out to form the NiO nanocrystals. A detailed analysis of the dimensions of nanocrystals reveals that the morphology attained differs from the thermodynamically expected equilibrium shape. The deviations from the equilibrium shape are found to follow a systematic trend where the in-plane basal dimensions, that is, the length and width of the nanocrystals grown differ in discretized dimensions. This discretization suggests that for a given interfacial area of nanocrystals there are multiple stable basal rectangular geometries attainable.


Corresponding author

Address all correspondence to V. Nagarajan at


Hide All
1Castell, M.R., Wincott, P.L., Condon, N.G., Muggelberg, C., Thornton, G., Dudarev, S.L., Sutton, A.P., and Briggs, G.A.D.: Atomic-resolution STM of a system with strongly correlated electrons:NiO(001) surface structure and defect sites. Phys. Rev. B 55, 7859 (1997).
2Bandara, J. and Weerasinghe, H.: Solid-state dye-sensitized solar cell with p-type NiO as a hole collector. Sol. Energy Mater. Sol. Cells 85, 385 (2005).
3Jin, H., Okamoto, T., and Ishida, M.: Development of a novel chemical-looping combustion: synthesis of a solid looping material of NiO/NiAl2O4. Ind. Eng. Chem. Res. 38, 126 (1998).
4Feinleib, J. and Adler, D.: Band structure and electrical conductivity of NiO. Phys. Rev. Lett. 21, 1010 (1968).
5Sattler, K.D.: Hanbook of Nanophysics: Nanotubes and Nanowires, (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2010).
6Fernández-García, M. and Rodriguez, J.A.: Metal oxide nanoparticles. In Encyclopedia of Inorganic and Bioinorganic Chemistry (John Wiley & Sons, Ltd., 2011).
7Norton, D.P.: Synthesis and properties of epitaxial electronic oxide thin-film materials. Mater. Sci. Eng., R 43, 139 (2004).
8Lee, M.J., Park, Y., Suh, D.S., Lee, E.H., Seo, S., Kim, D.C., Jung, R., Kang, B.S., Ahn, S.E., and Lee, C.: Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater. 19, 3919 (2007).
9Wei, Z.P., Arredondo, M., Peng, H.Y., Zhang, Z., Guo, D.L., Xing, G.Z., Li, Y.F., Wong, L.M., Wang, S.J., Valanoor, N., and Wu, T.: A template and catalyst-free metal-etching-oxidation method to synthesize aligned oxide nanowire arrays: NiO as an example. ACS Nano 4, 4785 (2010).
10Du, N., Zhang, H., Chen, B., Ma, X., Liu, Z., Wu, J., and Yang, D.: Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors. Adv. Mater. 19, 1641 (2007).
11Fasaki, I., Giannoudakos, A., Stamataki, M., Kompitsas, M., György, E., Mihailescu, I.N., Roubani-Kalantzopoulou, F., Lagoyannis, A., and Harissopulos, S.: Nickel oxide thin films synthesized by reactive pulsed laser deposition: characterization and application to hydrogen sensing. Appl. Phys. A 91, 487 (2008).
12Sasi, B. and Gopchandran, K.G.: Nanostructured mesoporous nickel oxide thin films. Nanotechnology 18, 1 (2007).
13Sullaphen, J., Bogle, K., Cheng, X., Gregg, J.M., and Valanoor, N.: Interface mediated resistive switching in epitaxial NiO nanostructures. Appl. Phys. Lett. 100, 203115 (2012).
14Barbier, A. and Renaud, G.: Structural investigation of the NiO(111) single crystal surface. Surf. Sci. 392, L15 (1997).
15Rohr, F., Wirth, K., Libuda, J., Cappus, D., Baumer, M., and Freund, H.J.: Hydroxyl driven reconstruction of the polar NiO(111) surface. Surf. Sci. 315, L977 (1994).
16Schulze, M., Reissner, R., Lorenz, M., Radke, U., and Schnurnberger, W.: Photoelectron study of electrochemically oxidized nickel and water adsorption on defined NiO surface layers. Electrochim. Acta 44, 3969 (1999).
17Song, Z., Chen, L., Hu, J., and Richards, R.: NiO(111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater. Nanotechnology 20, 275707 (2009).
18Bogle, K.A., Anbusathaiah, V., Arredondo, M., Lin, J.-Y., Chu, Y.-H., O'Neill, C., Gregg, J.M., Castell, M.R., and Nagarajan, V.: Synthesis of epitaxial metal oxide nanocrystals via a phase separation approach. ACS Nano 4, 5139 (2010).
19Bogle, K.A., Cheung, J., Chen, Y.-L., Liao, S.-C., Lai, C.-H., Chu, Y.-H., Gregg, J.M., Ogale, S.B., and Valanoor, N.: Epitaxial magnetic oxide nanocrystals via phase decomposition of bismuth perovskite precursors. Adv. Funct. Mater. 22, 5224 (2012).
20Silly, F. and Castell, M.R.: Selecting the shape of supported metal nanocrystals: Pd huts, hexagons, or pyramids on SrTiO3(001). Phys. Rev. Lett. 94, 046103 (2005).
21Marshall, M.S.J. and Castell, M.R.: Shape transitions of epitaxial islands during strained layer growth: anatase TiO2(001) on SrTiO3(001). Phys. Rev. Lett. 102, 146102 (2009).
Type Description Title
Supplementary materials

Cheung et al. supplementary material
Supplementary figures

 Word (6.2 MB)
6.2 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed