Skip to main content Accessibility help

Sustainable products from bio-oils

  • Bernal Sibaja Hernández (a1), Mehul Barde (a2), Brian Via (a3) and Maria L. Auad (a4)


The continued use of finite fossil fuel resources has shifted thinking toward a potential future bioeconomy, and the field of polymer science will play a critical role in valorization of bio-derived materials. Interest in renewable resources is constantly increasing, backed up by new environmental regulations and economic considerations. Biomass is abundant and diverse, and polymeric materials based on renewable feedstocks represent a viable alternative to fossil resources. Bio-oil—a dark brown, free-flowing organic liquid mixture—is a product of fast pyrolysis or liquefaction of biomass. Bio-oil generally comprises a large amount of water and hundreds of organic chemical compounds that can be further broken down into families of reactive structures, capable of producing new synthetic pathways to design and synthesize high-performance biopolymers and bioresins using lignocellulosic biomass. These new polymeric materials have demonstrated a unique combination of thermal resistance and low cost intrinsic of the biomass utilized, as well as superior mechanical performance of polymeric resins sufficient to compete with high-performance structural resins and coating materials.



Hide All
1. US Department of Energy, US Department of Agriculture, “Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply” (April 2005),
2. Li, C., Zhao, X., Wang, A., Huber, G.W., Zhang, T., Chem. Rev. 115, 11559 (2015).
3. Scarlat, N., Dallemand, J.F., Monforti-Ferrario, F., Nita, V., Environ. Dev. 15, 3 (2015).
5. The Freedonia Group, “Fiber-Reinforced Plastic Composites–Demand and Sales Forecasts, Market Share, Market Size, Market Leaders” (October 2013),
6. Nova-Institut GmbH, “Market Study and Database on Bio-Based Polymers in the World: Capacities, Production and Applications: Status Quo and Trends towards 2020” (July 2013),
7. Meyer, H.P., Org. Process Res. Dev. 15, 180 (2011).
8. Corma, A., Iborra, S., Velty, A., Chem. Rev. 107, 2411 (2007).
9. Mathers, R.T., J. Polym. Sci. A Polym. Chem. 50, 1 (2012).
10. Huber, G.W., Sara, I., Corma, A., Chem Rev. 2, 4044 (2006).
11. Yao, K., Tang, C., Macromolecules 46, 1689 (2013).
12. Travaini, R., Martin-Juarez, J., Lorenzo-Hernando, A., Bolado-Rodriguez, S., Bioresour. Technol. 199, 2 (2016).
13. Garcia, R., Pizarro, C., Lavin, A.G., Bueno, J.L., Bioresour. Technol. 103, 249 (2012).
14. Behera, S., Arora, R., Nandhagopal, N., Kumar, S., Renew. Sustain. Energy Rev. 36, 91 (2014).
15. Narodoslawsky, M., Niederl-Schmidinger, A., Halasz, L., J. Cleaner Prod. 16, 164 (2008).
16. Hamelinck, C.N., Faaij, A.P.C., Energy Policy 34, 3268 (2006).
17. Thomas, J.E., Milne, A., Soltys, N., J. Anal. Appl. Pyrolysis 9, 207 (1986).
18. Patel, M., Zhang, X., Kumar, A., Renew. Sustain. Energy Rev. 53, 1486 (2016).
19. Kan, T., Strezov, V., Evans, T.J., Renew. Sustain. Energy Rev. 57, 1126 (2016).
20. Mohan, D., Pittman, C.U., Steele, P.H., Energy Fuels 20, 848 (2006).
21. Balat, M., Kirtay, E., Balat, H., Energy Convers. Manage. 50, 3147 (2009).
22. Bridgwater, A.V., Czernik, S., Piskorz, J., “An Overview of Fast Pyrolysis,” in Progress in Thermochemical Biomass Conversion, Bridgwater, A.V., Ed. (Blackwell Science, London, UK, 2001), p. 977.
23. Rezaei, P.S., Shafaghat, H., Daud, W.M.A.W., Appl. Catal. A 469, 490 (2014).
24. Lehto, J., Oasmaa, A., Solantausta, Y., Kytö, M., Chiaramonti, D., Appl. Energy 116, 178 (2014).
25. Krutof, A., Hawboldt, K., Renew. Sustain. Energy Rev. 59, 406 (2016).
26. No, S.Y., Renew. Sustainable Energy Rev. 40, 1108 (2014).
27. Chattanathan, S.A., Adhikari, S., Abdoulmoumine, N., Renew. Sustain. Energy Rev. 16, 2366 (2012).
28. Shen, D., Jin, W., Hu, J., Xiao, R., Luo, K., Renew. Sustain. Energy Rev. 51, 761 (2015).
29. Staš, M., Kubička, D., Chudoba, J., Pospíšil, M., Energy Fuels 28, 385 (2014).
30. Xiu, S., Shahbazi, A., Renew. Sustain. Energy Rev. 16, 4406 (2012).
31. Kim, J.-S., Bioresour. Technol. 178, 90 (2015).
32. Effendi, A., Gerhauser, H., Bridgwater, A.V., Renew. Sustain. Energy Rev. 12, 2092 (2008).
33. Maity, S.K., Renew. Sustain. Energy Rev. 43, 1427 (2015).
34. Wei, N., Via, B.K., Wang, Y., McDonald, T., Auad, M.L., Ind. Crops Prod. 57, 116 (2014).
35. Celikbag, Y., Robinson, T.J., Via, B.K., Adhikari, S., Auad, M.L., J. Appl. Polym. Sci. 132 (28), 9 (2015).
36. Sibaja, B., Adhikari, S., Celikbag, Y., Via, B., Auad, M.L., “Renewable Resources as Precursors of Polymeric Bio-Based Resins,” Proc. Conf. ACS (San Diego, CA, March 13–17, 2016).
37. Barde, M., Sibaja, B., Auad, M.L., “Pyrolysis Bio-Oil as Precursor of Polymeric Bio-Based Resins,” Proc. Conf. Frontiers in Biorefining: Chemicals and Products from Renewable Carbon (San Simon Island, GA, November 8–11, 2016).
38. Kunaver, M., Jasiukaityte, E., Cuk, N., Guthrie, J.T., J. Appl. Polym. Sci. 115, 1265 (2010).
39. Liu, Y., Gao, J., Guo, H., Pan, Y., Zhou, C., Cheng, Q., Via, B.K., BioResources 10, 638 (2015).
40. Mao, A., Shi, S.Q., Steele, P., For. Prod. J. 61, 240 (2011).
41. Özbay, G., Ayrilmis, N., Ind. Crops Prod. 66, 68 (2015).
42. Zou, X.W., Qin, T.F., Wang, Y., Huang, L.H., Han, Y.M., Li, Y., Bioresour. Technol. 114, 654 (2012).


Related content

Powered by UNSILO

Sustainable products from bio-oils

  • Bernal Sibaja Hernández (a1), Mehul Barde (a2), Brian Via (a3) and Maria L. Auad (a4)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.