Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T04:01:50.645Z Has data issue: false hasContentIssue false

Paper-based microfluidic devices: A complex low-cost material in high-tech applications

Published online by Cambridge University Press:  10 May 2017

A. Böhm
Affiliation:
Thermo Fisher Scientific, Germany; alexander.boehm2@thermofisher.com
M. Biesalski
Affiliation:
Technische Universität Darmstadt, Germany; biesalski@tu-darmstadt.de
Get access

Abstract

Paper is a material made from renewable resources, and it has been used intensively for almost 2000 years. It is a highly porous, bendable, and foldable flat structure of randomly arranged and connected fiber-like basic building blocks. The capability to transport fluids without pumps and sophisticated dosing systems is attractive. Paper microfluidics especially has gained increasing interest, particularly in the last decade. Although a number of interesting demonstration devices for easy-to-use diagnostic systems have been reported, only a limited number of these have found applications. This is mainly due to the geometric and chemical complexity of the material. While chemical functionalization (e.g., for defining hydrophobic barriers for spatially resolved fluid transport) is well advanced, understanding and controlling capillary-driven transport of a fluid within the complex porous matrix of paper. This article highlights recent advances and outlines design strategies for successful microfluidic paper-based applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Whitesides, G.M., Nature 442, 368 (2006).CrossRefGoogle Scholar
Rolland, J.P., Mourey, D.A., MRS Bull. 38, 299 (2013).CrossRefGoogle Scholar
Li, X., Ballerini, D.R., Shen, W., Biomicrofluidics 6, 011301 (2012).CrossRefGoogle Scholar
Yetisen, A.K., Akram, M.S., Lowe, C.R., Lab Chip 13, 2210 (2013).CrossRefGoogle Scholar
Liana, D.D., Raguse, B., Gooding, J.J., Chow, E., Sensors 12, 11505 (2012).Google Scholar
Bracher, P.J., Gupta, M., Whitesides, G.M., J. Mater. Chem. 20, 5117 (2010).CrossRefGoogle Scholar
Dungchai, W., Chailapakul, O., Henry, C.S., Anal. Chem. 81, 5821 (2009).CrossRefGoogle Scholar
Apilux, A., Siangproh, W., Praphairaksit, N., Chailapakul, O., Talanta 97, 388 (2012).CrossRefGoogle Scholar
Songjaroen, T., Dungchai, W., Chailapakul, O., Laiwattanapaisal, W., Talanta 85, 2587 (2011).Google Scholar
Wang, J., Monton, M.R.N., Zhang, X., Filipe, C.D.M., Pelton, R., Brennan, J.D., Lab Chip 14, 691 (2014).CrossRefGoogle Scholar
Böhm, A., Carstens, F., Trieb, C., Schabel, S., Biesalski, M., Microfluid. Nanofluid. 16, 789 (2014).CrossRefGoogle Scholar
Li, X., Tian, J., Garnier, G., Shen, W., Colloids Surf. B 76, 564 (2010).Google Scholar
Arena, A., Donato, N., Saitta, G., Bonavita, A., Rizzo, G., Neri, G., Sens. Actuators B 145, 488 (2010).Google Scholar
Lu, Y., Shi, W., Qin, J., Lin, B., Anal. Chem. 82, 329 (2010).CrossRefGoogle Scholar
Fu, E., Lutz, B., Kauffman, P., Yager, P., Lab Chip 10, 918 (2010).CrossRefGoogle Scholar
Fu, E., Ramsey, S.A., Kauffman, P., Lutz, B., Yager, P., Microfluid. Nanofluid. 10, 29 (2011).Google Scholar
Fenton, E.M., Mascarenas, M.R., López, G.P., Sibbett, S.S., ACS Appl. Mater. Interfaces 1, 124 (2009).CrossRefGoogle Scholar
Cretich, M., Sedini, V., Damin, F., Pelliccia, M., Sola, L., Chiari, M., Anal. Biochem. 397, 84 (2010).Google Scholar
Khan, M.S., Thouas, G., Shen, W., Whyte, G., Garnier, G., Anal. Chem. 82, 4158 (2010).CrossRefGoogle Scholar
Martinez, A.W., Phillips, S.T., Whitesides, G.M., Proc. Natl. Acad. Sci. U.S.A. 105, 19606 (2008).CrossRefGoogle Scholar
Osborn, J.L., Lutz, B., Fu, E., Kauffman, P., Stevens, D.Y., Yager, P., Lab Chip 10, 2659 (2010).Google Scholar
Carrilho, E., Phillips, S.T., Vella, S.J., Martinez, A.W., Whitesides, G.M., Anal. Chem. 81, 5990 (2009).Google Scholar
Rezk, A.R., Qi, A., Friend, J.R., Li, W.H., Yeo, L.Y., Lab Chip 12, 773 (2012).Google Scholar
Glavan, A.C., Martinez, R.V., Maxwell, E.J., Subramaniam, A.B., Nunes, R.M.D., Soh, S., Whitesides, G.M., Lab Chip 13, 2922 (2013).CrossRefGoogle Scholar
Songjaroen, T., Dungchai, W., Chailapakul, O., Henry, C.S., Laiwattanapaisal, W., Lab Chip 12, 3392 (2012).CrossRefGoogle Scholar
Yang, X., Forouzan, O., Brown, T.P., Shevkoplyas, S.S., Lab Chip 12, 274 (2011).Google Scholar
Jahanshahi-Anbuhi, S., Chavan, P., Sicard, C., Leung, V., Hossain, S.M.Z., Pelton, R., Brennan, J.D., Filipe, C.D.M., Lab Chip 12, 5079 (2012).CrossRefGoogle Scholar
Songok, J., Toivakka, M., Microfluid. Nanofluid. 20, 63 (2016).CrossRefGoogle Scholar
Li, X., Zwanenburg, P., Liu, X., Lab Chip 13, 2609 (2013).Google Scholar
Evans, E., Gabriel, E.F.M., Coltro, W.K.T., Garcia, C.D., Analyst 139, 2127 (2014).CrossRefGoogle Scholar
Lucas, R., Colloid Polym. Sci. 23, 15 (1918).Google Scholar
Washburn, E.W., Phys. Rev. 17, 273 (1921).CrossRefGoogle Scholar
Hong, S., Kim, W., Microfluid. Nanofluid. 19, 845 (2015).Google Scholar
Toley, B.J., McKenzie, B., Liang, T., Buser, J.R., Yager, P., Fu, E., Anal. Chem. 85, 11545 (2013).CrossRefGoogle Scholar
Fu, E., Kauffman, P., Lutz, B., Yager, P., Sens. Actuators B 149, 325 (2010).CrossRefGoogle Scholar
Fu, E., Liang, T., Houghtaling, J., Ramachandran, S., Ramsey, S.A., Lutz, B., Yager, P., Anal. Chem. 83, 7941 (2011).CrossRefGoogle Scholar
Houghtaling, J., Liang, T., Thiessen, G., Fu, E., Anal. Chem. 85, 11201 (2013).Google Scholar
Lutz, B., Liang, T., Fu, E., Ramachandran, S., Kauffman, P., Yager, P., Lab Chip 13, 2840 (2013).Google Scholar
Noh, H., Phillips, S.T., Anal. Chem. 82, 8071 (2010).Google Scholar
Noh, H., Phillips, S.T., Anal. Chem. 82, 4181 (2010).CrossRefGoogle Scholar
Martinez, A.W., Phillips, S.T., Nie, Z., Cheng, C.-M., Carrilho, E., Wiley, B.J., Whitesides, G.M., Lab Chip 10, 2499 (2010).Google Scholar
Liu, H., Li, X., Crooks, R.M., Anal. Chem. 85, 4263 (2013).CrossRefGoogle Scholar
Chen, H., Cogswell, J., Anagnostopoulos, C., Faghri, M., Lab Chip 12, 2909 (2012).Google Scholar