Skip to main content Accessibility help

Experimental measurements in single-nanotube fluidic channels

  • Hyegi Min (a1), Yun-Tae Kim (a2) and Chang Young Lee (a3)


Technologies for detecting and analyzing a single molecule help us understand and engineer numerous phenomena observed in nature. Carbon nanotubes (CNTs) are highly efficient molecular conduits due to their atomically smooth surface. Because of their small diameters, comparable to the size of a single molecule, even a single blocking molecule can obstruct CNT fluidic channels. Analyzing these pore-blocking events in CNTs therefore enables single-molecule studies. The high-aspect ratios of CNT channels, which extend the time scale of transport, allow for studying molecular transport that is too fast to record in other systems. Both theoretical studies and ensemble experimental measurements have verified the enhanced flow of various ions and molecular species in CNTs. Experimental measurements of a single-CNT fluidic channel, however, have only recently begun, demonstrating the detection of individual DNA, polymer, and alkali-metal ions. This article reviews recent advances in single-nanotube fluidic channels with a focus on experimental measurements.



Hide All
1. Holt, J.K., Adv. Mater. 21, 3542 (2009).
2. Park, H.G., Jung, Y., Chem. Soc. Rev. 43, 565 (2014).
3. Noy, A., Park, H.G., Fornasiero, F., Holt, J.K., Grigoropoulos, C.P., Bakajin, O., Nano Today 2, 22 (2007).
4. Pang, P., He, J., Park, J.H., Krstic, P.S., Lindsay, S., ACS Nano 5, 7277 (2011).
5. Liu, H.T., He, J., Tang, J.Y., Liu, H., Pang, P., Cao, D., Krstic, P., Joseph, S., Lindsay, S., Nuckolls, C., Science 327, 64 (2010).
6. Ito, T., Sun, L., Crooks, R.M., Chem. Commun. 13, 1482 (2003).
7. Sun, L., Crooks, R.M., J. Am. Chem. Soc. 122, 12340 (2000).
8. Lee, C.Y., Choi, W., Han, J.H., Strano, M.S., Science 329, 1320 (2010).
9. Choi, W., Ulissi, Z.W., Shimizu, S.F., Bellisario, D.O., Ellison, M.D., Strano, M.S., Nat. Commun. 4, 2397 (2013).
10. Schoch, R.B., Han, J.Y., Renaud, P., Rev. Mod. Phys. 80, 839 (2008).
11. Wu, J., Paudel, K.S., Strasinger, C., Hammell, D., Stinchcomb, A.L., Hinds, B.J., Proc. Natl. Acad. Sci. U.S.A. 107, 11698 (2010).
12. Pan, X.L., Fan, Z.L., Chen, W., Ding, Y.J., Luo, H.Y., Bao, X.H., Nat. Mater. 6, 507 (2007).
13. Huang, S.M., Cai, X.Y., Liu, J., J. Am. Chem. Soc. 125, 5636 (2003).
14. Jin, Z., Chu, H.B., Wang, J.Y., Hong, J.X., Tan, W.C., Li, Y., Nano Lett. 7, 2073 (2007).
15. Choi, W., Lee, C.Y., Ham, M.H., Shimizu, S., Strano, M.S., J. Am. Chem. Soc. 133, 203 (2011).
16. Song, W.S., Pang, P., He, J., Lindsay, S., ACS Nano 7, 689 (2013).
17. Wu, J., Gerstandt, K., Majumder, M., Zhan, X., Hinds, B.J., Nanoscale 3, 3321 (2011).
18. Wu, J., Gerstandt, K., Zhang, H.B., Liu, J., Hinds, B.J., Nat. Nanotechnol. 7, 133 (2012).
19. Lee, B., Baek, Y., Lee, M., Jeong, D.H., Lee, H.H., Yoon, J., Kim, Y.H., Nat. Commun. 6, 7109 (2015).
20. Ito, T., Sun, L., Crooks, R.M., Anal. Chem. 75, 2399 (2003).
21. Ito, T., Sun, L., Henriquez, R.R., Crooks, R.M., Acc. Chem. Res. 37, 937 (2004).
22. Liu, L., Xie, J.I., Li, T., Wu, H.C., Nat. Protoc. 10, 1670 (2015).
23. Liu, L., Yang, C., Zhao, K., Li, J.Y., Wu, H.C., Nat. Commun. 4, 2989 (2013).
24. Secchi, E., Nigues, A., Jubin, L., Siria, A., Bocquet, L., Phys. Rev. Lett. 116, 154501 (2016).
25. Geng, J., Kim, K., Zhang, J.F., Escalada, A., Tunuguntla, R., Comolli, L.R., Allen, F.I., Shnyrova, A.V., Cho, K.R., Munoz, D., Wang, Y.M., Grigoropoulos, C.P., Ajo-Franklin, C.M., Frolov, V.A., Noy, A., Nature 514, 612 (2014).
26. Tunuguntla, R.H., Allen, F.I., Kim, K., Belliveau, A., Noy, A., Nat. Nanotechnol. 11, 639 (2016).
27. He, J., Liu, H., Pang, P., Cao, D., Lindsay, S., J. Phys. Condens. Matter 22, 454112 (2010).
28. Park, J.H., He, J., Gyarfas, B., Lindsay, S., Krstic, P.S., Nanotechnology 23, 455107 (2012).
29. Pikovsky, A.S., Kurths, J., Phys. Rev. Lett. 78, 775 (1997).
30. Guo, S.R., Meshot, E.R., Kuykendall, T., Cabrini, S., Fornasiero, F., Adv. Mater. 27, 5726 (2015).
31. Huang, S., Romero-Ruiz, M., Castell, O.K., Bayley, H., Wallace, M.I., Nat. Nanotechnol. 10, 986 (2015).
32. Wang, C., Bruce, R.L., Duch, E.A., Patel, J.V., Smith, J.T., Astier, Y., Wunsch, B.H., Meshram, S., Galan, A., Scerbo, C., Pereira, M.A., Wang, D.Q., Colgan, E.G., Lin, Q.H., Stolovitzky, G., ACS Nano 9, 1206 (2015).
33. Robertson, J.W.F., Rodrigues, C.G., Stanford, V.M., Rubinson, K.A., Krasilnikov, O.V., Kasianowicz, J.J., Proc. Natl. Acad. Sci. U.S.A. 104, 8207 (2007).
34. Bonardi, F., Nouwen, N., Feringa, B.L., Driessen, A.J.M., Mol. Biosyst. 8, 709 (2012).
35. Fyta, M., J. Phys. Condens. Matter 27, 273101 (2015).
36. Derrington, I.M., Butler, T.Z., Collins, M.D., Manrao, E., Pavlenok, M., Niederweis, M., Gundlach, J.H., Proc. Natl. Acad. Sci. U.S.A. 107, 16060 (2010).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed