Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T18:27:42.919Z Has data issue: false hasContentIssue false

Enzymatic activity under pressure

Published online by Cambridge University Press:  10 October 2017

Claus Czeslik
Affiliation:
TU Dortmund University, Germany; claus.czeslik@uni-dortmund.de
Trung Quan Luong
Affiliation:
TU Dortmund University, Germany; trung.luong@rub.de
Roland Winter
Affiliation:
TU Dortmund University, Germany; roland.winter@tu-dortmund.de
Get access

Abstract

Hydrostatic pressure is an essential physical parameter for studying the structure, dynamics, phase behavior, and free-energy landscape of biomolecular systems. High pressure is an important feature of certain natural environments, and pressure effects on biosystems are of increasing interest for biotechnological applications. Here, we focus on the pressure-dependent activity of enzymes in different environments, from bulk solution to various interfaces. Results were obtained using a high-pressure stopped-flow methodology and high-pressure total internal reflection fluorescence spectroscopy. We highlight that pressure can enhance enzyme activity in various environments, contributing to the fundamental understanding of life under extreme conditions, and elucidate new ways to optimize biotechnological processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eisenmenger, M.J., Reyes-De-Corcuera, J.I., Enzyme Microb. Technol. 45, 331 (2009).CrossRefGoogle Scholar
Akasaka, K., Nagahata, H., Maeno, A., Sasaki, K., Biophysics 4, 29 (2008).CrossRefGoogle Scholar
Mozhaev, V.V., Lange, R., Kudryashova, E.V., Balny, C., Biotechnol. Bioeng. 52, 320 (1996).Google Scholar
Taniguchi, Y., Suzuki, K., J. Phys. Chem. 87, 5185 (1983).CrossRefGoogle Scholar
Luong, T.Q., Erwin, N., Neumann, M., Schmidt, A., Loos, C., Schmidt, V., Fändrich, M., Winter, R., Angew. Chem. Int. Ed. 55, 12412 (2016).CrossRefGoogle Scholar
Luong, T.Q., Kapoor, S., Winter, R., ChemPhysChem 16, 3555 (2015).Google Scholar
Royer, C.A., Biochim. Biophys. Acta 1595, 201 (2002).Google Scholar
Boonyaratanakornkit, B.B., Park, C.B., Clark, D.S., Biochim. Biophys. Acta 1595, 235 (2002).Google Scholar
Kapoor, S., Triola, G., Vetter, I.R., Erlkamp, M., Waldmann, H., Winter, R., Proc. Natl. Acad. Sci. U.S.A. 109, 460 (2012).CrossRefGoogle Scholar
Mishra, R., Winter, R., Angew. Chem. Int. Ed. 47, 6518 (2008).Google Scholar
Schuabb, C., Kumar, N., Pataraia, S., Marx, D., Winter, R., Nat. Commun. 8, 14661 (2017).Google Scholar
Akasaka, K., Matsuki, H., Eds., High Pressure Bioscience (Springer, Dordrecht, The Netherlands, 2015).Google Scholar
Sun, Z., Winter, R., in Advances in High Pressure Bioscience and Biotechnology II, Winter, R., Ed. (Springer, Berlin, 2003), pp. 117120.Google Scholar
Blow, D.M., Acc. Chem. Res. 9, 145 (1976).Google Scholar
Ui, N., Biochim. Biophys. Acta 229, 582 (1971).Google Scholar
Kumar, S., Hein, G.E., Biochemistry 9, 291 (1970).Google Scholar
Marini, M.A., Wunsch, C., Biochemistry 2, 1454 (1963).Google Scholar
Derr, L., Dringen, R., Treccani, L., Hildebrand, N., Colombi Ciacchi, L., Rezwan, K., J. Colloid Interface Sci. 455, 236 (2015).Google Scholar
Malinin, A.S., Rakhnyanskaya, A.A., Bacheva, A.V., Yaroslavov, A.A., Polym. Sci. Ser. A Polym. Phys. 53, 52 (2011).CrossRefGoogle Scholar
You, C.-C., Agasti, S.S., De, M., Knapp, M.J., Rotello, V.M., J. Am. Chem. Soc. 128, 14612 (2006).Google Scholar
Celej, M.S., D’Andrea, M.G., Campana, P.T., Fidelio, G.D., Bianconi, M.L., Biochem. J. 378, 1059 (2004).Google Scholar
Luong, T.Q., Winter, R., Phys. Chem. Chem. Phys. 17, 23273 (2015).CrossRefGoogle Scholar
Mozhaev, V.V., Heremans, K., Frank, J., Masson, P., Balny, C., Trends Biotechnol. 12, 493 (1994).Google Scholar
Suladze, S., Cinar, S., Sperlich, B., Winter, R., J. Am. Chem. Soc. 137, 12588 (2015).Google Scholar
Decaneto, E., Suladze, S., Rosin, C., Havenith, M., Lubitz, W., Winter, R., Biophys. J. 109, 2371 (2015).Google Scholar
Schuabb, V., Czeslik, C., Langmuir 30, 15496 (2014).Google Scholar
Low, P.S., Somero, G.N., Proc. Natl. Acad. Sci. U.S.A. 72, 3014 (1975).Google Scholar
Talbert, J.N., Goddard, J.M., Colloids Surf. B 93, 8 (2012).Google Scholar
Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., Fernandez-Lafuente, R., Enzyme Microb. Technol. 40, 1451 (2007).Google Scholar
Rabe, M., Verdes, D., Seeger, S., Adv. Colloid Interface Sci. 162, 87 (2011).Google Scholar
Schuabb, V., Cinar, S., Czeslik, C., Colloids Surf. B 140, 497 (2016).Google Scholar
Schuabb, V., Winter, R., Czeslik, C., Biophys. Chem. 218, 1 (2016).Google Scholar
Levin, A., Erlkamp, M., Steitz, R., Czeslik, C., Phys. Chem. Chem. Phys. 18, 9070 (2016).Google Scholar
Czeslik, C., Winter, R., Phys. Chem. Chem. Phys. 3, 235 (2001).Google Scholar
Koo, J., Czeslik, C., Soft Matter 8, 11670 (2012).Google Scholar
Cinar, S., Czeslik, C., Colloids Surf. B 129, 161 (2015).Google Scholar
Koo, J., Erlkamp, M., Grobelny, S., Steitz, R., Czeslik, C., Langmuir 29, 8025 (2013).Google Scholar
Axelrod, D., Burghardt, T.P., Thompson, N.L., Annu. Rev. Biophys. Bioeng. 13, 247 (1984).Google Scholar
Czeslik, C., Royer, C., Hazlett, T., Mantulin, W., Biophys. J. 84, 2533 (2003).Google Scholar
Koo, J., Czeslik, C., Rev. Sci. Instrum. 83, 085109 (2012).Google Scholar
Decher, G., Science 277, 1232 (1997).Google Scholar
Kurinomaru, T., Tomita, S., Hagihara, Y., Shiraki, K., Langmuir 30, 3826 (2014).CrossRefGoogle Scholar
Chen, Q., Rausch, K.G., Schönherr, H., Vancso, G.J., ChemPhysChem 11, 3534 (2010).Google Scholar
Biswas, R., Pal, S.K., Chem. Phys. Lett. 387, 221 (2004).Google Scholar
Spreti, N., Mancini, M.V., Germani, R., Di Profio, P., Savelli, G., J. Mol. Catal. B Enzym. 50, 1 (2008).Google Scholar