Skip to main content Accessibility help

DNA origami: The bridge from bottom to top

  • Anqin Xu (a1), John N. Harb (a2), Mauri A. Kostiainen (a3), William L. Hughes (a4), Adam T. Woolley (a5), Haitao Liu (a6) and Ashwin Gopinath (a7)...


Over the last decade, DNA origami has matured into one of the most powerful bottom-up nanofabrication techniques. It enables both the fabrication of nanoparticles of arbitrary two-dimensional or three-dimensional shapes, and the spatial organization of any DNA-linked nanomaterial, such as carbon nanotubes, quantum dots, or proteins at ∼5-nm resolution. While widely used within the DNA nanotechnology community, DNA origami has yet to be broadly applied in materials science and device physics, which now rely primarily on top-down nanofabrication. In this article, we first introduce DNA origami as a modular breadboard for nanomaterials and then present a brief survey of recent results demonstrating the unique capabilities created by the combination of DNA origami with existing top-down techniques. Emphasis is given to the open challenges associated with each method, and we suggest potential next steps drawing inspiration from recent work in materials science and device physics. Finally, we discuss some near-term applications made possible by the marriage of DNA origami and top-down nanofabrication.



Hide All
1. Wu, S.Y., Lin, C.Y., Chiang, M.C., Liaw, J.J., Cheng, J.Y., Yang, S.H., Tsai, C.H., Chen, P.N., Miyashita, T., Chang, C.H., Chang, V.S., Pan, K.H., Chen, J.H., Mor, Y.S., Lai, K.T., Liang, C.S., Chen, H.F., Chang, S.Y., Lin, C.J., Hsieh, C.H., Tsui, R.F., Yao, C.H., Chen, C.C., Chen, R., Lee, C.H., Lin, H.J., Chang, C.W., Chen, K.W., Tsai, M.H., Chen, K.S., Ku, Y., Jang, S.M., IEDM Tech. Dig. (2017),
2. Xia, Y., Whitesides, G.M., Annu. Rev. Mater. Sci. 28, 1 (2015).
3. Zhang, J., Li, Y., Zhang, X., Yang, B., Adv. Mater. 22, 4249 (2010).
4. Seeman, N.C., Annu. Rev. Biochem. 79, 65 (2010).
5. Rothemund, P.W.K., Nature 440, 297 (2006).
6. Praetorius, F., Kick, B., Behler, K.L., Honemann, M.N., Weuster-Botz, D., Dietz, H., Nature (forthcoming).
7. Keren, K., Krueger, M., Gilad, R., Ben-Yoseph, G., Sivan, U., Braun, E. Science 297, 72 (2002).
8. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H., Science 301, 1882 (2003).
9. Gürr, F.N., Schwarz, F.W., Ye, J., Diez, S., Schmidt, T.L., ACS Nano 10, 5374 (2016).
10. Liu, J., Geng, Y., Pound, E., Gyawali, S., Ashton, J.R., Hickey, J., Woolley, A.T., Harb, J.N., ACS Nano 5, 2240 (2011).
11. Knudsen, J.B., Liu, L., Kodal, A.L.B., Madsen, M., Li, Q., Song, J., Woehrstein, J.B., Wickham, S.F.J., Strauss, M.T., Schueder, F., Vinther, J., Krissanaprasit, A., Gudnason, D., Allen, A., Smith, A., Ogaki, R., Zelikin, A.N., Besenbacher, F., Birkedal, V., Yin, P., Shih, W.M., Jungmann, R., Dong, M., Gothelf, K.V., Nat. Nanotechnol. 10, 892 (2015).
12. Maune, H.T., Han, S.-P., Barish, R.D., Bockrath, M., Goddard, W.A. III, Rothemund, P.W.K., Winfree, E., Nat. Nanotechnol. 5, 61 (2010).
13. Ko, S.H., Gallatin, G.M., Liddle, J.A., Adv. Funct. Mater. 22, 1015 (2012).
14. Voigt, N.V., Tørring, T., Rotaru, A., Jacobsen, M.F., Ravnsbæk, J.B., Subramani, R., Mamdouh, W., Kjems, J., Mokhir, A., Besenbacher, F., Gothelf, K.V. Nat. Nanotechnol. 5, 200 (2010).
15. Kuzyk, A., Schreiber, R., Zhang, H., Govorov, A.O., Liedl, T., Liu, N., Nat. Mater. 13, 862 (2014).
16. Roller, E.-M., Besteiro, L.V., Pupp, C., Khorashad, L.K., Govorov, A.O., Liedl, T., Nat. Phys. 13, 761 (2017), doi:10.1038/nphys4120.
17. Pilo-Pais, M., Acuna, G.P., Tinnerfeld, P., Liedl, T., MRS Bull. 42 (12), 936 (2017).
18. Zhang, T., Gao, N., Li, S., Lang, M.J., Xu, Q.-H., J. Phys. Chem. Lett. 6, 2043 (2015).
19. Acuna, G.P., Möller, F.M., Holzmeister, P., Beater, S., Lalkens, B., Tinnefeld, P., Science 338, 506 (2012).
20. Burns, J.R., Stulz, E., Howorka, S., Nano Lett. 13, 2351 (2013).
21. Funke, J.J., Dietz, H., Nat. Nanotechnol. 11, 47 (2016).
22. Gopinath, A., Rothemund, P.W.K., ACS Nano 8, 12030 (2014).
23. Gállego, I., Grover, M.A., Hud, N.V., Angew. Chem. Int. Ed. Engl. 54 6765 (2015).
24. Ponnuswamy, N., Bastings, M.M.C., Nathwani, B., Ryu, J.H., Chou, L.Y.T., Vinther, M., Nat. Commun. 8, 15654 (2017).
25. Agarwal, N.P., Matthies, M., Gür, F.N., Osada, K., Schmidt, T.L., Angew. Chem. Int. Ed. Engl. 56, 5460 (2017).
26. Cui, Y., Björk, M.T., Liddle, J.A., Sönnichsen, C., Boussert, B., Alivisatos, A.P., Nano Lett. 4, 1093 (2004).
27. Gerdon, A.E., Oh, S.S., Hsieh, K., Ke, Y., Yan, H., Soh, H.T., Small 5, 1942 (2009).
28. Ding, B., Wu, H., Xu, W., Zhao, Z., Liu, Y., Yu, H., Yan, H., Nano Lett. 10, 5065 (2010).
29. Kershner, R.J., Bozano, L.D., Micheel, C.M., Hung, A.M., Fornof, A.R., Cha, J.N., Rettner, C.T., Bersani, M., Frommer, J., Rothemund, P.W.K., Wallraff, G.M., Nat. Nanotechnol. 4, 557 (2009).
30. Gopinath, A., Miyazono, E., Faraon, A., Rothemund, P.W.K., Nature 535, 401 (2016).
31. Martin, J.E., Wilcoxon, J.P., Odinek, J., Provencio, P., J. Phys. Chem. B 104, 9475 (2000).
32. Wilk, T., Webster, S.C., Kuhn, A., Rempe, G., Science (80-) 317, 488 (2007).
33. Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C.L., Klimeck, G., Simmons, M.Y., Nat. Nanotechnol. 7, 242 (2012).
34. Surwade, S.P., Zhao, S., Liu, H., J. Am. Chem. Soc. 133, 11868 (2011).
35. Diagne, C.T., Brun, C., Gasparutto, D., Baillin, X., Tiron, R., ACS Nano 10, 6458 (2016).
36. Surwade, S.P., Zhou, F., Wei, B., Sun, W., Powell, A., O’Donnell, C., Yin, P., Liu, H., J. Am. Chem. Soc. 135, 6778 (2013).
37. Schreiber, R., Kempter, S., Holler, S., Schüller, V., Schiffels, D., Simmel, S.S., Nickels, P.C., Liedl, T., Small 7, 1795 (2011).
38. Surwade, S.P., Zhou, F., Li, Z., Powell, A., O’Donnella, C., Liu, H., Chem. Commun. 52, 1677 (2016).
39. Busuttil, K., Rotaru, A., Dong, M., Besenbachera, F., Gothelf, K.V., Chem. Commun. 49, 1927 (2013).
40. Tian, C., Kim, H., Sun, W., Kim, Y., Yin, P., Liu, H., ACS Nano 11, 227 (2017).
41. Busuttil, K., Rotaru, A., Dong, M., Besenbacher, F., Gothelf, K.V., Chem. Commun. (Camb.) 49, 1927 (2013).
42. Tokura, Y., Jiang, Y., Welle, A., Stenzel, M.H., Krzemien, K.M., Michaelis, J., Berger, R., Barner-Kowollik, C., Wu, Y., Weil, T., Angew. Chem. Int. Ed. Engl. 55, 5692 (2016).
43. Discekici, E.H., Pester, C.W., Treat, N.J., Lawrence, J., Mattson, K.M., Narupai, B., Toumayan, E.P., Luo, Y., McGrath, A.J., Clark, P.G., de Alaniz, J.R., Hawker, C.J., ACS Macro Lett. 5, 258 (2016).
44. Huang, Z., Geyer, N., Werner, P., De Boor, J., Gösele, U., Adv. Mater. 23, 285 (2011).
45. Sun, Z., Yan, Z., Yao, J., Beitler, E., Zhu, Y., Tour, J.M., Nature 468, 549 (2010).
46. Zhou, F., Sun, W., Ricardo, K.B., Wang, D., Shen, J., Yin, P., Liu, H., ACS Nano 10, 3069 (2016).
47. Lee, S.L., Chen, K-N., Lu, J.J-Q., J. Microelectromech. Syst. 20, 885 (2011).
48. Yu, N., Capasso, F., Nat. Mater. 13, 139 (2014).
49. Chong, K.E., Hopkins, B., Staude, I., Miroshnichenko, A.E., Dominguez, J., Decker, M., Neshev, D.N., Brener, I., Kivshar, Y.S., Small 10, 1985 (2014).
50. Yan, H., Low, T., Guinea, F., Xia, F., Avouris, P., Nano Lett. 14, 4581 (2014).
51. Fang, Z., Wang, Y., Schlather, A.E., Liu, Z., Ajayan, P.M., García de Abajo, F.J., Nordlander, P., Zhu, X., Halas, N.J., Nano Lett. 14, 299 (2014).
52. Zhang, S., Chen, Y., Sci. Rep. 5, 16637 (2015).
53. Tikhomirov, G., Petersen, P., Qian, L., Nat. Nanotechnol. 12, 251 (2017).
54. Liu, W., Zhong, H., Wang, R., Seeman, N.C., Angew. Chem. Int. Ed. Engl. 50, 264 (2011).
55. Suzuki, Y., Endo, M., Sugiyama, H., Nat. Commun. 6, 8052 (2015).
56. Woo, S., Rothemund, P.W.K., Nat. Chem. 3, 620 (2011).
57. Rafat, A., Pirzer, T., Scheible, M.B., Kostina, A., Simmel, F.C., Angew. Chem. Int. Ed. Engl. 53, 7665 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed