Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-dxfhg Total loading time: 0.294 Render date: 2021-03-04T04:39:34.349Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Bio Focus: Seashells inspire thin-film heater composite using silver nanowires

Published online by Cambridge University Press:  10 May 2018

Abstract

Image of the first page of this article
Type
Materials News
Copyright
Copyright © Materials Research Society 2018 

Nacre, which comprises the inner iridescent shell layer of oysters and coats the outer layer of pearls, is an exceptionally strong material with unique and fascinating properties. While stacked aragonite (calcium carbonate) platelets—inherently weak materials in their standalone state—make up 95% of the composition of nacre, strong elastic biopolymers bind these layers together into a stiff yet tough, lightweight structure. Researchers have noticed the unique properties of this material and, subsequently, have relied on biopolymers and nanomaterials to design similarly arranged composites. This design yields nacre-mimetic material with tunable mechanical properties, glass-like transparency, flame resistance, and many other capabilities.

Thin, flexible resistive heaters can stand to benefit from this technology. Indium tin oxide (ITO), which is typically used in transparent conductors, is too expensive and too brittle to be used in flexible electronics. Alternatively, networks of silver nanowires (AgNWs) formed on plastic substrates are flexible, optically transparent, and inexpensive. However, these nanowires do not adhere well to their respective plastic substrates and are very sensitive to scratches and mechanical damage. Furthermore, the required processing methods are time-consuming and often increase sheet resistance of resulting devices.

Researchers from Singapore’s Nanyang Technological University have recently brought forth a unique design that solves many of these challenges. Hongwei Duan, who is the lead researcher of this project, along with Paramita Das, who had previously designed synthetic nanoclays and polymers, designed a functional nanocomposite that mimics the nacre structure. They prepared a nacre-mimetic substrate and used hot pressing to embed silver nanowires into the composite. They published their design of a thin-film heater in a recent issue of ACS Applied Nano Materials (doi:10.1021/acsanm.7b00348).

(a) Demonstration of a thin-film, optically transparent resistive heater in an electric circuit. (b) Structure of the silver nanowires (AgNWs) embedded in the laponite-based nacre-mimetic composite. Credit: Paramita Das and Hongwei Duan.

The nacre-like substrate was prepared through self-assembly of a poly(vinyl alcohol) (PVA) polymer-coated laponite (naturally occurring silicate) nanoclay core–shell platelets. The team synthesized AgNWs, condensed them into a film, and pressed the AgNW layer into the PVA/laponite nanocomposites using a laminator at 80°C.

“We observed that by simple hot-pressing, AgNWs actually got nicely embedded in our nacre-mimetic substrate and showed good adhesion as well as considerable resistance to erosion. Whereas, the AgNWs were only loosely deposited on PET [poly(ethylene terephthalate)] under the same process and, hence, prone to be erased by simple tapping and, therefore, had required post-treatments,” says postdoctoral researcher Paramita Das.

The resulting PVA/laponite nacre-mimetic nanocomposites were almost completely optically transparent. The nacre-mimetic films were stronger (3.3 GPa Young’s modulus) than comparable PET films (0.55 GPa), which had been previously used for AgNW-based thin-film heaters. A mass loading of 48 mg of AgNW per 1 square meter of the nacre-mimetic nanocomposite yielded highly conductive films with only 30 Ω/sq sheet resistance. The films had higher tensile strength, good flexibility and deformability, and could stretch up to 80% tensile strain while retaining their electrical properties. Under an applied 5.0 V potential, the thin films rapidly heat up (2.6°C/min rate) and can reach temperatures as high as 150°C. The heater sustained repeated cyclic mechanical, electrical, and thermal loads without any degradation and significantly outperformed the stability limits of similar PET-based devices.

“Due to the mechanical deformability, conformability, and efficient thermal response, we envision that this flexible heater based on AgNWs embedded on a nacre-mimetic substrate will be a potential candidate in flexible wearable devices, wound dressing, or bioelectronics,” Duan says.

Perhaps the most interesting use of this flexible thin-film resistive heater is in an antibacterial patch that releases antibiotics through a temperature trigger. To explore this application, the researchers synthesized an alginate hydrogel film, encapsulated vancomycin (a common antibiotic), and coated the hydrogel with a temperature-sensitive phase-change material. The researchers then attached the patch onto the heater. At around 38°C, the hydrogel underwent a phase-change and released the antibiotic molecules. The thermal release system was successfully tested against MRSA bacteria, and the released antibiotics successfully killed more pathogens than comparable control systems. The results show remarkable promise of this heater design for temperature-triggered drug delivery applications.

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 81
Total number of PDF views: 136 *
View data table for this chart

* Views captured on Cambridge Core between 10th May 2018 - 4th March 2021. This data will be updated every 24 hours.

Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bio Focus: Seashells inspire thin-film heater composite using silver nanowires
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Bio Focus: Seashells inspire thin-film heater composite using silver nanowires
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Bio Focus: Seashells inspire thin-film heater composite using silver nanowires
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *