Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T07:12:59.727Z Has data issue: false hasContentIssue false

Assessing plant uptake and transport mechanisms of engineered nanomaterials from soil

Published online by Cambridge University Press:  10 May 2017

Illya A. Medina-Velo
Affiliation:
The University of Texas at El Paso, USA; iamedinavelo@utep.edu
Jose R. Peralta-Videa
Affiliation:
The University of Texas at El Paso, USA; jperalta@utep.edu
Jorge L. Gardea-Torresdey
Affiliation:
Department of Chemistry, The University of Texas at El Paso, USA; jgardea@utep.edu
Get access

Abstract

Agricultural soils are among the depositories of engineered nanomaterials (ENMs). Soil exposure to ENMs occurs through the intentional use of nano-agrochemicals, as well as through incidental contamination from industrial-waste release, irrigation with wastewater or gray water, amendment with ENMs-loaded sludge (soil conditioning to stimulate plant growth), or atmospheric fallouts. Concerns about ENM interactions with plants raise two questions. (1) Are ENMs taken up from soil by plants? (2) If they are taken up, do they remain in the nanoform within plant tissues? Experiments with crop plants have demonstrated that some ENMs such as TiO2 are taken up by roots and translocated to aboveground tissues, including fruits, without biotransformation. CeO2 ENM is also taken up by the roots; however, although most of it remains as ENM, it releases cerium ions that are incorporated into organic compounds. CeO2 ENM has been shown to be translocated from roots to seeds in soybean grown in soil amended with such ENM. On the other hand, ZnO ENM is transformed at the soil/root interface, leading to tissue Zn enrichment. Overall, most ENMs are taken up by plants with either low or no transformation, and accumulate in tissues.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, P., Lombi, E., Zhao, F.J., Kopittke, P.M., Trends Plant Sci. 21, 699 (2016).Google Scholar
Keller, A.A., McFerran, S., Lazareva, A., Suh, S., J. Nanopart. Res. 15, 1 (2013).Google Scholar
Rizwan, M., Ali, S., Qayyum, M.F., Ok, Y.S., Adrees, M., Ibrahim, M., Zia-ur-Rehman, M., Farid, M., Abbas, F., J. Hazard. Mater. 322 (2017).CrossRefGoogle Scholar
López-Moreno, M.L., de la Rosa, G., Hernández-Viezcas, J.A., Castillo-Michel, H., Botez, C.E., Peralta-Videa, J.R., Gardea-Torresdey, J.L., Environ. Sci. Technol. 44, 19 (2010).Google Scholar
Zuverza-Mena, N., Martinez-Fernandez, D., Du, W., Hernandez-Viezcas, J.A., Bonilla-Bird, N., Lopez-Moreno, M., Komarek, M., Peralta-Videa, J.R., Gardea-Torresdey, J.L., Plant Physiol. Biochem. 110, 236 (2017).Google Scholar
Jones, J.B., Plant Nutrition and Soil Fertility Manual, 2nd ed. (CRC Press, Boca Raton, FL, 2012).Google Scholar
Taiz, L., Zeiger, E., Plant Physiology, 3rd ed. (Sinauer Associates, Sunderland, MA, 2006).Google Scholar
Du, W., Tan, W., Peralta-Videa, J.R., Gardea-Torresdey, J.L., Ji, R., Yin, Y., Guo, H., Plant Physiol. Biochem. 110, 210 (2017).Google Scholar
Servin, A.D., Morales, M.I., Castillo-Michel, H., Hernandez-Viezcas, J.A., Munoz, B., Zhao, L., Nunez, J.E., Peralta-Videa, J.R., Gardea-Torresdey, J.L., Environ. Sci. Technol. 47, 11592 (2013).Google Scholar
Raliya, R., Nair, R., Chavalmane, S., Wang, W.-N., Biswas, P., Metallomics 7, 1584 (2015).Google Scholar
Barrios, A.C., Rico, C.M., Trujillo-Reyes, J., Medina-Velo, I.A., Peralta-Videa, J.R., Gardea-Torresdey, J.L., Sci Total Environ. 563–564 (2016).Google Scholar
Zhao, L., Peralta-Videa, J.R., Varela-Ramirez, A., Castillo-Michel, H., Li, C., Zhang, J., Aguilera, R.J., Keller, A.A., Gardea-Torresdey, J.L., J. Hazard. Mater. 225–226, 131 (2012).Google Scholar
Majumdar, S., Peralta-Videa, J.R., Bandyopadhyay, S., Castillo-Michel, H., Hernandez-Viezcas, J.A., Sahi, S., Gardea-Torresdey, J.L., J. Hazard. Mater. 278, 279 (2014).Google Scholar
Zhang, P., Ma, Y., Zhang, Z., He, X., Zhang, J., Guo, Z., Tai, R., Zhao, Y., Chai, Z., ACS Nano 6, 9943 (2012).Google Scholar
Hernandez-Viezcas, J.A., Castillo-Michel, H., Andrews, J.C., Cotte, M., Rico, C., Peralta-Videa, J.R., Ge, Y., Priester, J.H., Holden, P.A., Gardea-Torresdey, J.L., ACS Nano 7, 1415 (2013).Google Scholar
Hernandez-Viezcas, J.A., Castillo-Michel, H., Servin, A.D., Peralta-Videa, J.R., Gardea-Torresdey, J.L., Chem. Eng. J. 170, 346 (2011).CrossRefGoogle Scholar
Wang, P., Menzies, N.W., Lombi, E., McKenna, B.A., Johannessen, B., Glover, C.J., Kappen, P., Kopittke, P.M., Environ. Sci. Technol. 47, 13822 (2013).Google Scholar
Priester, J.H., Ge, Y., Mielke, R.E., Horst, A.M., Moritz, S.C., Espinosa, K., Gelb, J., Walker, S.L., Nisbet, R.M., An, Y.-J., Schimel, J.P., Palmer, R.G., Hernandez-Viezcas, J.A., Zhao, L., Gardea-Torresdey, J.L., Holden, P.A., Proc. Natl. Acad. Sci. U.S.A. 109, E2451 (2012).Google Scholar