Skip to main content Accessibility help
×
Home

Article contents

Three-dimensional printing with sacrificial materials for soft matter manufacturing

Published online by Cambridge University Press:  10 August 2017

Christopher S. O’Bryan
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, USA; csobryan@ufl.edu
Tapomoy Bhattacharjee
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, USA; tapomoy@ufl.edu
Sean R. Niemi
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, USA; impstar@ufl.edu
Sidhika Balachandar
Affiliation:
University of Florida, USA; sbalachandar@gm.sbac.edu
Nicholas Baldwin
Affiliation:
University of Florida, USA; Nlbaldwin98@ufl.edu
S. Tori Ellison
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, USA; trilison@ufl.edu
Curtis R. Taylor
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, USA; curtis.taylor@ufl.edu
W. Gregory Sawyer
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, USA; wgsawyer@ad.ufl.edu
Thomas E. Angelini
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, USA; t.e.angelini@ufl.edu
Get access

Abstract

Three-dimensional (3D) printing has expanded beyond the mere patterned deposition of melted solids, moving into areas requiring spatially structured soft matter—typically materials composed of polymers, colloids, surfactants, or living cells. The tunable and dynamically variable rheological properties of soft matter enable the high-resolution manufacture of soft structures. These rheological properties are leveraged in 3D printing techniques that employ sacrificial inks and sacrificial support materials, which go through reversible solid–fluid transitions under modest forces or other small perturbations. Thus, a sacrificial material can be used to shape a second material into a complex 3D structure, and then discarded. Here, we review the sacrificial materials and related methods used to print soft structures. We analyze data from the literature to establish manufacturing principles of soft matter printing, and we explore printing performance within the context of instabilities controlled by the rheology of soft matter materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Bhattacharjee, T., Zehnder, S.M., Rowe, K.G., Jain, S., Nixon, R.M., Sawyer, W.G., Angelini, T.E., Sci. Adv. 1 , e1500655 (2015).CrossRef
Lee, J.-S., Hong, J.M., Jung, J.W., Shim, J.-H., Oh, J.-H., Cho, D.-W., Biofabrication 6, 024103 (2014).CrossRef
Ouyang, L., Highley, C.B., Rodell, C.B., Sun, W., Burdick, J.A., ACS Biomater. Sci. Eng. 2, 1743 (2016).CrossRef
Shim, J.-H., Lee, J.-S., Kim, J.Y., Cho, D.-W., J. Micromech. Microeng. 22, 085014 (2012).CrossRef
Bertassoni, L.E., Cecconi, M., Manoharan, V., Nikkhah, M., Hjortnaes, J., Cristino, A.L., Barabaschi, G., Demarchi, D., Dokmeci, M.R., Yang, Y., Lab Chip 14, 2202 (2014).CrossRef
Kang, H.-W., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J., Atala, A., Nat. Biotechnol. 34, 312 (2016).CrossRef
Hinton, T.J., Hudson, A., Pusch, K., Lee, A., Feinberg, A.W., ACS Biomater. Sci. Eng. 2, 1781 (2016).CrossRef
Muth, J.T., Vogt, D.M., Truby, R.L., Mengüç, Y., Kolesky, D.B., Wood, R.J., Lewis, J.A., Adv. Mater. 26, 6307 (2014).CrossRef
O’Bryan, C.S., Bhattacharjee, T., Hart, S., Kabb, C.P., Schulze, K.D., Chilakala, I., Sumerlin, B.S., Sawyer, W.G., Angelini, T.E., Sci. Adv. 3, e1602800 (2017).CrossRef
Bhattacharjee, T., Gil, C.J., Marshall, S.L., Urueña, J.M., O’Bryan, C.S., Carstens, M., Keselowsky, B., Palmer, G.D., Ghivizzani, S., Gibbs, C.P., ACS Biomater. Sci. Eng. 2, 1787 (2016).CrossRef
Pati, F., Shim, J.-H., Lee, J.-S., Cho, D.-W., Manuf. Lett. 1, 49 (2013).CrossRef
Xu, C., Chai, W., Huang, Y., Markwald, R.R., Biotechnol. Bioeng. 109, 3152 (2012).CrossRef
Wood, G., Keech, M., Biochem. J. 75, 588 (1960).CrossRef
Yang, Y.-L., Kaufman, L.J., Biophys. J. 96, 1566 (2009).CrossRef
Yang, Y.-L., Motte, S., Kaufman, L.J., Biomaterials 31, 5678 (2010).CrossRefPubMed
de Gennes, P.G., Angew. Chem. Int. Ed. Engl. 31, 842 (1992).CrossRef
Bellan, L.M., Singh, S.P., Henderson, P.W., Porri, T.J., Craighead, H.G., Spector, J.A., Soft Matter 5, 1354 (2009).CrossRef
Jin, Y., Compaan, A., Bhattacharjee, T., Huang, Y., Biofabrication 8, 025016 (2016).CrossRef
Hanson Shepherd, J.N., Parker, S.T., Shepherd, R.F., Gillette, M.U., Lewis, J.A., Nuzzo, R.G., Adv. Funct. Mater. 21, 47 (2011).CrossRef
Homan, K.A., Kolesky, D.B., Skylar-Scott, M.A., Herrmann, J., Obuobi, H., Moisan, A., Lewis, J.A., Sci. Rep. 6, 34845 (2016).CrossRef
Kolesky, D.B., Truby, R.L., Gladman, A., Busbee, T.A., Homan, K.A., Lewis, J.A., Adv. Mater. 26, 3124 (2014).CrossRef
Highley, C.B., Rodell, C.B., Burdick, J.A., Adv. Mater. 27, 5075 (2015).CrossRef
Rodell, C.B., Kaminski, A.L., Burdick, J.A., Biomacromolecules 14, 4125 (2013).CrossRef
Habas, J.-P., Pavie, E., Lapp, A., Peyrelasse, J., J. Rheol. 48, 1 (2004).CrossRef
Perreur, C., Habas, J.-P., Peyrelasse, J., François, J., Lapp, A., Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63, 031505 (2001).CrossRef
Dimitriou, C.J., Ewoldt, R.H., McKinley, G.H., J. Rheol. 57, 27 (2013).CrossRef
LeBlanc, K.J., Niemi, S.R., Bennett, A.I., Harris, K.L., Schulze, K.D., Sawyer, W.G., Taylor, C., Angelini, T.E., ACS Biomater. Sci. Eng. 2, 1796 (2016).CrossRef
Standard Specification for Additive Manufacturing File Format (AMF) , Version 1.2 (ASTM International, West Conshohocken, PA, 2016).
Hinton, T.J., Jallerat, Q., Palchesko, R.N., Park, J.H., Grodzicki, M.S., Shue, H.-J., Ramadan, M.H., Hudson, A.R., Feinberg, A.W., Sci. Adv. 1, e1500758 (2015).CrossRef
Landers, R., Hübner, U., Schmelzeisen, R., Mülhaupt, R., Biomaterials 23, 4437 (2002).CrossRef
Landers, R., Pfister, A., Hübner, U., John, H., Schmelzeisen, R., Mülhaupt, R., J. Mater. Sci. 37, 3107 (2002).CrossRef
Miller, J.S., Stevens, K.R., Yang, M.T., Baker, B.M., Nguyen, D.-H.T., Cohen, D.M., Toro, E., Chen, A.A., Galie, P.A., Yu, X., Nat. Mater. 11, 768 (2012).CrossRef
Miller, J.S., PLoS Biol. 12, e1001882 (2014).CrossRef
Therriault, D., Shepherd, R.F., White, S.R., Lewis, J.A., Adv. Mater. 17, 395 (2005).CrossRef
Therriault, D., White, S.R., Lewis, J.A., Nat. Mater. 2, 265 (2003).CrossRef
Coutanceau, M., Defaye, J.-R., Appl. Mech. Rev. 44, 255 (1991).CrossRef
Taneda, S., J. Phys. Soc. Jpn. 11, 1104 (1956).CrossRef
Thom, A., Proc. R. Soc. Lond. A 141, 651 (1933).CrossRef
Wu, W., DeConinck, A., Lewis, J.A., Adv. Mater. 23, 24 (2011).
Compaan, A.M., Christensen, K., Huang, Y., ACS Biomater. Sci. Eng. (2016), doi:10.1021/acsbiomaterials.6b00432.
Visser, J., Peters, B., Burger, T.J., Boomstra, J., Dhert, W.J., Melchels, F.P., Malda, J., Biofabrication 5, 035007 (2013).CrossRefPubMed
Kolesky, D.B., Homan, K.A., Skylar-Scott, M.A., Lewis, J.A., Proc. Natl. Acad. Sci. U.S.A. 113, 3179 (2016).CrossRef
Lee, V.K., Kim, D.Y., Ngo, H., Lee, Y., Seo, L., Yoo, S.-S., Vincent, P.A., Dai, G., Biomaterials 35, 8092 (2014).CrossRef
Lee, W., Lee, V., Polio, S., Keegan, P., Lee, J.-H., Fischer, K., Park, J.-K., Yoo, S.-S., Biotechnol. Bioeng. 105, 1178 (2010).
Sooppan, R., Paulsen, S.J., Han, J., Ta, A.H., Dinh, P., Gaffey, A.C., Venkataraman, C., Trubelja, A., Hung, G., Miller, J.S., Tissue Eng. Part C Methods 22, 1 (2015).CrossRef
Zhao, L., Lee, V.K., Yoo, S.-S., Dai, G., Intes, X., Biomaterials 33, 5325 (2012).CrossRef
Stokes, G.G., On the Effect of the Internal Friction of Fluids on the Motion of Pendulums (Pitt Press, 1851), vol. 9.Google Scholar
Pairam, E., Le, H., Fernández-Nieves, A., Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 90, 021002 (2014).CrossRef
Shanahan, M., Degennes, P., C.R. Acad. Sci. II 302, 517 (1986).
Style, R.W., Isa, L., Dufresne, E.R., Soft Matter 11, 7412 (2015).CrossRef
Style, R.W., Jagota, A., Hui, C.-Y., Dufresne, E.R., Annu. Rev. Condens. Matter Phys. 8, 99 (2016).CrossRef
Chang, Y.-W., Fragkopoulos, A.A., Marquez, S.M., Kim, H.D., Angelini, T.E., Fernández-Nieves, A., New J. Phys. 17, 033017 (2015).
Binks, B.P., Curr. Opin. Colloid Interface Sci. 7, 21 (2002).CrossRef
Pickering, S.U., J. Chem. Soc. Trans. 91, 2001 (1907).CrossRef

O’Bryan supplementary material

O’Bryan supplementary material

PDF 1 MB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 266
Total number of PDF views: 794 *
View data table for this chart

* Views captured on Cambridge Core between 10th August 2017 - 22nd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-7fh6l Total loading time: 1.161 Render date: 2021-01-22T10:51:53.826Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Three-dimensional printing with sacrificial materials for soft matter manufacturing
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Three-dimensional printing with sacrificial materials for soft matter manufacturing
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Three-dimensional printing with sacrificial materials for soft matter manufacturing
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *