Skip to main content Accessibility help
×
Home

Article contents

Intrinsically stretchable field-effect transistors

Published online by Cambridge University Press:  02 February 2017


Jiajie Liang
Affiliation:
School of Materials Science and Engineering, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, China; liang0909@nankai.edu.cn
Kwing Tong
Affiliation:
Department of Materials Sciences and Engineering, Henry Samuli School of Engineering and Applied Science, University of California, Los Angeles, USA; kwing.tong@gmail.com
Huibin Sun
Affiliation:
Department of Materials Sciences and Engineering, Henry Samuli School of Engineering and Applied Science, University of California, Los Angeles, USA; sunhuibin003@gmail.com
Qibing Pei
Affiliation:
University of California, Los Angeles, USA; qpei@seas.ucla.edu

Abstract

A thin-film field-effect transistor (TFT) is a three-terminal device comprising source, drain, and gate electrodes, a dielectric layer, a semiconductor layer, and a substrate. The TFT is a fundamental building component in a variety of electronic devices. Developing an intrinsically stretchable TFT entails availability and usage of a functional material with elastomeric deformability in response to an externally applied stress. This represents a major materials challenge. In this article, we survey strategies to synthesize these elastomeric functional materials, and how these materials are assembled to fabricate intrinsically stretchable TFT devices. Developing solution-based printing technology to assemble intrinsically stretchable TFTs is considered a prospective strategy for wearable electronics for industrial adaptation in the near future.


Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Vosgueritchian, M., Tok, J.B.-H., Bao, Z., Nat. Photonics 7, 769 (2013).CrossRef
Liang, J., Li, L., Chen, D., Hajagos, T., Ren, Z., Chou, S., Hu, W., Pei, Q., Nat. Commun. 6, 7647 (2015).CrossRef
Kim, D.H., Xiao, J., Song, J., Huang, Y., Rogers, J.A., Adv. Mater. 22, 2108 (2010).CrossRef
Rogers, J.A., Someya, T., Huang, Y., Science 327, 1603 (2010).CrossRef
Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R., Graz, I., Bauer-Gogonea, S., Bauer, S., Someya, T., Nature 499, 458 (2013).CrossRef
Kim, D.-H., Song, J., Choi, W.M., Kim, H.-S., Kim, R.-H., Liu, Z., Huang, Y.Y., Hwang, K.-C., Zhang, Y.W., Rogers, J.A., Proc. Natl. Acad. Sci. U.S.A. 105, 18675 (2008).CrossRef
Chortos, A., Lim, J., To, J.W.F., Vosgueritchian, M., Dusseault, T.J., Kim, T.H., Hwang, S., Bao, Z.N., Adv. Mater. 26, 4253 (2014).CrossRef
Chae, S.H., Yu, W.J., Bae, J.J., Duong, D.L., Perello, D., Jeong, H.Y., Ta, Q.H., Ly, T.H., Vu, Q.A., Yun, M., Duan, X.F., Lee, Y.H., Nat. Mater. 12, 403 (2013).CrossRef
Lee, S.-K., Kim, B.J., Jang, H., Yoon, S.C., Lee, C., Hong, B.H., Rogers, J.A., Cho, J.H., Ahn, J.-H., Nano Lett. 11, 4642 (2011).CrossRef
Pu, J., Zhang, Y., Wada, Y., Wang, J., Li, L.J., Iwasa, Y., Takenobu, T., Appl. Phys. Lett. 103, 023505 (2013).CrossRef
Rao, Y.-L., Chortos, A., Pfattner, R., Lissel, F., Chiu, Y.C., Feig, V., Xu, J., Kurosawa, T., Gu, X.D., Wang, C., He, M., Chung, J.W., Bao, Z.N., J. Am. Chem. Soc. 138, 6020 (2016).CrossRef
Shin, M., Song, J.H., Lim, G.H., Lim, B., Park, J.J., Jeong, U., Adv. Mater. 26, 3706 (2014).CrossRef
Liang, J., Tong, K., Pei, Q.A., Adv. Mater. 28, 5986 (2016).CrossRef
McCoul, D., Hu, W., Gao, M., Mehta, V., Pei, Q., Adv. Electron. Mater. 2, 1500407 (2016).CrossRef
Chen, D., Liang, J., Pei, Q., Sci. China Chem. 59, 659 (2016).CrossRef
Xu, F., Wu, M.Y., Safron, N.S., Roy, S.S., Jacobberger, R.M., Bindl, D.J., Seo, J.H., Chang, T.H., Ma, Z., Arnold, M.S., Nano Lett. 14, 682 (2014).CrossRef
Kong, D., Pfattner, R., Chortos, A., Lu, C., Hinckley, A.C., Wang, C., Lee, W.-Y., Chung, J.W., Bao, Z., Adv. Funct. Mater. 26, 4680 (2016).CrossRef
Liu, H., Zhang, L., Yang, D., Ning, N., Yu, Y., Yao, L., Yan, B., Tian, M., J. Phys. D Appl. Phys. 45, 485303 (2012).CrossRef
Mali, C., Chavan, S., Kanse, K., Kumbharkhane, A., Mehrotra, S., Indian J. Pure Appl. Phys. 45, 476 (2007).
O’Connor, B., Chan, E.P., Chan, C., Conrad, B.R., Richter, L.J., Kline, R.J., Heeney, M., McCulloch, I., Soles, C.L., DeLongchamp, D.M., ACS Nano 4, 7538 (2010).CrossRef
Savagatrup, S., Printz, A.D., O’Connor, T.F., Zaretski, A.V., Lipomi, D.J., Chem. Mater. 26, 3028 (2014).CrossRef

Altmetric attention score


Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 89
Total number of PDF views: 648 *
View data table for this chart

* Views captured on Cambridge Core between 02nd February 2017 - 3rd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-mgw25 Total loading time: 0.299 Render date: 2020-12-03T01:15:13.022Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Thu Dec 03 2020 01:07:05 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Intrinsically stretchable field-effect transistors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Intrinsically stretchable field-effect transistors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Intrinsically stretchable field-effect transistors
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *