Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-d5zgf Total loading time: 0.296 Render date: 2021-03-05T12:12:43.110Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors

Published online by Cambridge University Press:  10 May 2018

Thomas Mikolajick
Affiliation:
TU Dresden, Germany; and Nanoelectronic Materials Laboratory GmbH, Germany; thomas.mikolajick@namlab.com
Stefan Slesazeck
Affiliation:
Nanoelectronic Materials Laboratory gGmbH, Germany; stefan.slesazeck@namlab.com
Min Hyuk Park
Affiliation:
Nanoelectronic Materials Laboratory gGmbH, Germany; minhyuk.park@namlab.com
Uwe Schroeder
Affiliation:
Nanoelectronic Materials Laboratory gGmbH, Germany; uwe.schroeder@namlab.com
Get access

Abstract

Ferroelectrics are promising for nonvolatile memories. However, the difficulty of fabricating ferroelectric layers and integrating them into complementary metal oxide semiconductor (CMOS) devices has hindered rapid scaling. Hafnium oxide is a standard material available in CMOS processes. Ferroelectricity in Si-doped hafnia was first reported in 2011, and this has revived interest in using ferroelectric memories for various applications. Ferroelectric hafnia with matured atomic layer deposition techniques is compatible with three-dimensional capacitors and can solve the scaling limitations in 1-transistor-1-capacitor (1T-1C) ferroelectric random-access memories (FeRAMs). For ferroelectric field-effect-transistors (FeFETs), the low permittivity and high coercive field Ec of hafnia ferroelectrics are beneficial. The much higher Ec of ferroelectric hafnia, however, makes high endurance a challenge. This article summarizes the current status of ferroelectricity in hafnia and explains how major issues of 1T-1C FeRAMs and FeFETs can be solved using this material system.

Type
Materials for Advanced Semiconductor Memories
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

Mitsui, T., “Ferroelectrics and Antiferroelectrics,” in Springer Handbook of Condensed Matter and Materials Data, Martienssen, W., Warlimont, H., Eds. (Springer-Verlag Berlin, 2005), pp. 903938.CrossRefGoogle Scholar
Mikolajick, T., Pinnow, C.-U., Proc. Nonvolatile Mem. Technol. Symp. (JPL Publishing, Pasadena, CA, 2002), pp. 46.Google Scholar
Buck, D.A., “Ferroelectrics for Digital Information Storage and Switching,” master’s thesis, Massachusetts Institute of Technology Digital Computer Laboratory (1952).Google Scholar
Anderson, J.R., Trans. Am. Inst. Electr. Eng. Pt. 1 71, 395 (1953).Google Scholar
Bondurant, D., Ferroelectrics 112, 273 (1990).CrossRefGoogle Scholar
Pinnow, C.-U., Mikolajick, T., J. Electrochem. Soc. 151, K13 (2004).CrossRefGoogle Scholar
Lee, S.Y., Kim, K., Int. Electron Devices Mtg. (2002), pp. 547550.CrossRefGoogle Scholar
Koo, J.-M., Seo, B.-S., Kim, S., Shin, S., Lee, J.-H., Baik, H., Lee, J.-H., Lee, J.H., Bae, B.-J., Lim, J.-E., Yoo, D.-C., Park, S.-O., Kim, H.-S., Han, H., Baik, S., Choi, J.-Y., Park, Y.J., Park, Y., Int. Electron Devices Mtg. (2005), pp. 340343.Google Scholar
Yeh, C.-P., Lisker, M., Kalkofen, B., Burte, E.P., AIP Adv. 6 (3), 035128 (2016).CrossRefGoogle Scholar
McAdams, H.P., Acklin, R., Blake, T., Du, X.-H., Eliason, J., Fong, J., Kraus, W.F., Liu, D., Madan, S., Moise, T., Natarajan, S., Qian, N., Qiu, Y., Remack, K.A., Rodriguez, J., Roscher, J., Seshadri, A., Summerfelt, S.R., IEEE J. Solid-State Circuits 39, 667 (2004).CrossRefGoogle Scholar
Ross, I.M., “Semiconductive Translating Device,” US Patent US2791760 A (1955).Google Scholar
Ma, T.P., Han, J.-P., IEEE Electron Device Lett. 23, 386 (2002).CrossRefGoogle Scholar
Sakai, S., Ilangovan, R., IEEE Electron Device Lett. 25, 369 (2004).CrossRefGoogle Scholar
Robertson, J., Eur. J. Appl. Phys. 28, 265 (2004).CrossRefGoogle Scholar
Bohr, M.T., Chau, R.S., Ghani, T., Mistry, K., IEEE Spectr. 44, 29 (2007).CrossRefGoogle Scholar
Materlik, R., Künneth, C., Kersch, A., J. Appl. Phys. 117, 134109 (2015).CrossRefGoogle Scholar
Böscke, T.S., Müller, J., Bräuhaus, D., Schröder, U., Böttger, U., Appl. Phys. Lett. 99, 102903 (2011).CrossRefGoogle Scholar
Böscke, T.S., Teichert, St., Bräuhaus, D., Müller, J., Schröder, U., Böttger, U., Mikolajick, T., Appl. Phys. Lett. 99, 112904 (2011).CrossRefGoogle Scholar
Scott, J.F., J. Phys. Condens. Matter 20 (2), 021001 (2007), http://iopscience.iop.org/article/10.1088/0953-8984/20/02/021001/meta.CrossRefGoogle Scholar
Martin, D., Müller, J., Schenk, T., Arruda, T.M., Kumar, A., Strelcov, E., Yurchuk, E., Müller, S., Pohl, D., Schröder, U., Kalinin, S.V., Mikolajick, T., Adv. Mater. 26, 8198 (2014).CrossRefGoogle Scholar
Hoffmann, M., Schroeder, U., Künneth, C., Kersch, A., Starschich, S., Böttger, U., Mikolajick, T., Nano Energy 18, 154 (2015).CrossRefGoogle Scholar
Smith, S.W., Kitahara, A.R., Rodriguez, M.A., Henry, M.D., Brumbach, M.T., Ihlefeld, J.F., Appl. Phys. Lett. 110, 072901 (2017).CrossRefGoogle Scholar
Mueller, J., Schröder, U., Böscke, T.S., Müller, I., Böttger, U., Wilde, L., Sundqvist, J., Lemberger, M., Kücher, P., Mikolajick, T., Frey, L., J. Appl. Phys. 110, 114113 (2011).CrossRefGoogle Scholar
Mueller, S., Mueller, J., Singh, A., Riedel, S., Sundqvist, J., Schroeder, U., Mikolajick, T., Adv. Funct. Mater. 22, 2412 (2012).CrossRefGoogle Scholar
Müller, J., Böscke, T.S., Bräuhaus, D., Schröder, U., Böttger, U., Sundqvist, J., Kücher, P., Mikolajick, T., Frey, L., Appl. Phys. Lett. 99, 112901 (2011).CrossRefGoogle Scholar
Schroeder, U., Yurchuk, E., Müller, J., Martin, D.., Schenk, T., Polakowski, P., Adelmann, C., Popovici, M.I., Kalinin, S.V., Mikolajick, T., Jpn. J. Appl. Phys. 53, 08LE02 (2014).CrossRefGoogle Scholar
Xu, L., Shibayama, S., Izukashi, K., Nishimura, T., Yajima, T., Migita, S., Toriumi, A., IEEE Int. Electron Devices Mtg. (2016), pp. 25.2.125.2.4.Google Scholar
Polakowski, P., Müller, J., Appl. Phys. Lett. 106, 232905 (2015).CrossRefGoogle Scholar
Sang, X., Grimley, E.D., Schenk, T., Schroeder, U., LeBeau, J.M., Appl. Phys. Lett. 106, 162905 (2015).CrossRefGoogle Scholar
Park, M.H., Schenk, T., Fancher, C.M., Grimley, E.D., Zhou, C., Richter, C., LeBeau, J.M., Jones, J.L., Mikolajick, T., Schroeder, U., J. Mater. Chem. C 5, 4677 (2017).CrossRefGoogle Scholar
Yurchuk, E., Müller, J., Knebel, S., Sundqvist, J., Graham, A.P., Melde, T., Schröder, U., Mikolajick, T., Thin Solid Films 533, 88 (2013).CrossRefGoogle Scholar
Park, M.H., Lee, Y.H., Kim, H.J., Schenk, T., Lee, W., Kim, K.D., Fengler, F.P.G., Mikolajick, T., Schroeder, U., Hwang, C.S., Nanoscale 9, 9973 (2017).CrossRefGoogle ScholarPubMed
Park, M.H., Kim, H.J., Moon, T., Kim, K.D., Lee, Y.H., Hyun, S.D., Mikolajick, T., Schroeder, U., Hwang, C.S., Nanoscale 10, 716 (2018).CrossRefGoogle ScholarPubMed
Polakowski, P., Riedel, S., Weinreich, W., Rudolf, M., Sundqvist, J., Seidel, K., Müller, J., 2014 Int. Mem. Workshop (2014), pp. 14.Google Scholar
Yurchuk, E., Mueller, S., Martin, D., Slesazeck, S., Schroeder, U., Mikolajick, T., Müller, J., Paul, J., Hoffmann, R., Sundqvist, J., Schlosser, T., Boschke, R., van Bentum, R., Trentzsch, M., Reliability Physics Symp. 2014 IEEE Int. (2014) pp.2E.5.12E.5.5.CrossRefGoogle Scholar
Schenk, T., Hoffmann, M., Ocker, J., Pešić, M., Mikolajick, T., Schroeder, U., ACS Appl. Mater. Interfaces 7, 20224 (2015).CrossRefGoogle Scholar
Pešić, M., Fengler, F.P.G., Larcher, L., Padovani, A., Schenk, T., Grimley, E.D., Sang, X., LeBeau, J.M., Slesazeck, S., Schroeder, U., Mikolajick, T., Adv. Funct. Mater. 26, 4601 (2016).CrossRefGoogle Scholar
Müller, J., Polakowski, P., Mueller, S., Mikolajick, T., ECS J. Solid State Sci. Technol. 4 (5), N30 (2015).CrossRefGoogle Scholar
Chernikova, A., Kozodaev, M., Markeev, A., Negrov, D., Spiridonov, M., Zarubin, S., Bak, O., Buragohain, P., Lu, H., Suvorova, E., Gruverman, A., Zenkevich, A., ACS Appl. Mater. Interfaces 8, 7232 (2016).CrossRefGoogle Scholar
Schenk, T., Schroeder, U., Mikolajick, T., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62 (3), 596 (2015)CrossRefGoogle Scholar
Schroeder, U., Pešic, M., Schenk, T., Mulaosmanovic, H., Slesazeck, S., Ocker, J., Richter, C., Yurchuk, E., Khullar, K., Müller, J., Polakowski, P., Grimley, E.D., LeBeau, J.M., Flachowsky, S., Jansen, S., Kolodinski, S., van Bentum, R., Kersch, A., Künneth, C., Mikolajick, T., Eur. Solid-State Device Res. Conf. (2016), pp. 364368.Google Scholar
Fengler, F.P.G., Pešić, M., Starschich, S., Schneller, T., Künneth, C., Böttger, U., Mulaosmanovic, H., Schenk, T., Park, M.H., Nigon, R., Muralt, P., Mikolajick, T., Schroeder, U., Adv. Electron. Mater. 3, 1600505 (2017).CrossRefGoogle Scholar
Müller, J., Böscke, T.S., Schröder, U., Mueller, S., Bräuhaus, D., Böttger, U., Frey, L., Mikolajick, T., Nano Lett. 12, 4318 (2012).CrossRefGoogle Scholar
Pešić, M., Knebel, S., Hoffmann, M., Richter, C., Mikolajick, T., Schroeder, U., IEEE Int. Electron Devices Mtg. (2016), pp. 11.6.111.6.4.Google Scholar
Pešić, M., Hoffmann, M., Richter, C., Mikolajick, T., Schroeder, U., Adv. Funct. Mater. 26, 7486 (2016).CrossRefGoogle Scholar
Pešić, M., Hoffmann, M., Richter, C., Slesazeck, S., Kämpfe, T., Eng, L.M., Mikolajick, T., Schroeder, U., Eur. Solid-State Device Res. Conf. 160 (2017).Google Scholar
Pešić, M., Hoffmann, M., Richter, C., Slesazeck, S., Schroeder, U., Mikolajick, T., Proc. Nonvolatile Mem. Technol. Symp. (2017), doi: 10.1109/NVMTS.2017.8171307.Google Scholar
Miller, S.L., McWhorter, P.J., J. Appl. Phys. 72, 5999 (1992).CrossRefGoogle Scholar
Salahuddin, S., Datta, S., Nano Lett. 8, 405 (2008).CrossRefGoogle Scholar
Gong, N., Ma, T.P., IEEE Electron Device Lett. 37, 1123 (2016).CrossRefGoogle Scholar
Böscke, T.S., Müller, J., Bräuhaus, D., Schröder, U., Böttger, U., Int. Electron Devices Mtg. (2011), pp. 24.5.124.5.4.Google Scholar
Müller, J., Boescke, T.S., Schroder, U., Hoffmann, R., Mikolajick, T., Frey, L., IEEE Electron Device Lett. 33 (2), 185 (2012).CrossRefGoogle Scholar
Müller, J., Yurchuk, E., Schlösser, T., Paul, J., Hoffmann, R., Müller, S., Martin, D., Slesazeck, S., Polakowski, P., Sundqvist, J., Czernohorsky, M., Seidel, K., Kücher, P., Boschke, R., Trentzsch, M., Gebauer, K., Schröder, U., Mikolajick, T., Symp. VLSI Technol. Dig. Tech. Pap. (2012), p. 25.Google Scholar
Trentzsch, M., Flachowsky, S., Richter, R., Paul, J., Reimer, B., Utess, D., Jansen, S., Mulaosmanovic, H., Müller, S., Slesazeck, S., Ocker, J., Noack, M., Müller, J., Polakowski, P., Schreiter, J., Beyer, S., Mikolajick, T., Rice, B., IEEE Int. Electron Devices Mtg. (2016), pp. 11.5.111.5.4.Google Scholar
Duenkel, S., Trentzsch, M., Richter, R., Moll, P., Fuchs, C., Gehring, O., Majer, M., Wittek, S., Müller, B., Melde, T., Mulaosmanovic, H., Slesazeck, S., Müller, S., Ocker, J., Noack, M., Löhr, D.-A., Polakowski, P., Müller, J., Mikolajick, T., Höntschel, J., Rice, B., Pellerin, J., Beyer, S., IEEE Int. Electron Devices Mtg. (2017), pp. 19.7.119.7.4.Google Scholar
Lin, C.I., Khan, A.I., Salahuddin, S., Hu, C., IEEE Trans. Electron Devices 63 (5), 2197 (2016).CrossRefGoogle Scholar
Li, K.S., Chen, P.-G., Lai, T.-Y., Lin, C.-H., Cheng, C.-C., Chen, C.-C., Wei, Y.-J., Hou, Y.-F., Liao, M.-H., Lee, M.-H., Chen, M.-C., Sheih, J.-M., Yeh, W.-K., Yang, F.-L., Salahuddin, S., Hu, C., IEEE Int. Electron Devices Mtg. (2015), pp. 22.6.122.6.4.Google Scholar
Lee, M.H., Fan, S.-T., Tang, C.-H., Chou, Y.-C., Chen, H.-H., Kuo, J.-Y., Xie, M.-J., Liu, S.-N., Liao, M.-H., Jong, C.-A., Li, K.-S., Chen, M.-C., Liu, C.W., IEEE Int. Electron Devices Mtg. (2016), pp. 12.1.112.1.4.Google Scholar
Hoffmann, M., Pešić, M., Chatterjee, K., Khan, A.I., Salahuddin, S., Slesazeck, S., Schroeder, U., Mikolajick, T., Adv. Funct. Mater. 20, 8643 (2016).CrossRefGoogle Scholar
Hoffmann, M., Pešić, M., Slesazeck, S., Schroeder, U., Mikolajick, T., Joint Int. EUROSOI Workshop Int. Conf. Ultimate Integration Silicon (EUROSOI-ULIS) (2017), pp. 14.Google Scholar
Kim, Y.J., Park, M.H., Lee, Y.H., Kim, H.J., Jeon, W., Moon, T., Kim, K.D., Jeong, D.S., Yamada, H., Hwang, C.S., Sci. Rep. 6, 19039 (2016).CrossRefGoogle Scholar
Kim, Y.J., Yamada, H., Moon, T., Kwon, Y.J., An, C.H., Kim, H.J., Kim, K.D., Lee, Y.H., Hyun, S.D., Park, M.H., Hwang, C.S., Nano Lett. 16 (7), 4375 (2016).CrossRefGoogle Scholar
Yurchuk, E., Müller, J., Müller, S., Paul, J., Pešić, M., van Bentum, R., Schroeder, U., Mikolajick, T., IEEE Trans. Electron Devices 63 (9), 3501 (2016).CrossRefGoogle Scholar
Mueller, J., Polakowski, P., Muller, S., Mulaosmanovic, H., Ocker, J., Mikolajick, T., Slesazeck, S., Flachowsky, S., Trentzsch, M., Non-Volatile Mem. Technol. Symp. (Pittsburgh, PA, 2016), pp. 17.Google Scholar
Chatterjee, K., Kim, S., Karbasian, G., Tan, A.J., Yadav, A.K., Khan, A.I., Hu, C., Salahuddin, S., IEEE Electron Device Lett. 38 (10), 1379 (2017).CrossRefGoogle Scholar
Park, M.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., Hwang, C.S., Nano Energy 12, 131 (2015).CrossRefGoogle Scholar
Park, M.H., Schenk, T., Hoffmann, M., Knebel, S., Gärtner, J., Mikolajick, T., Schroeder, U., Nano Energy 36, 381 (2017).CrossRefGoogle Scholar
Müller, J., Böscke, T.S., Müller, S., Yurchuk, E., Polakowski, P., Paul, J., Martin, D., Schenk, T., Khullar, K., Kersch, A., Weinreich, W., Riedel, S., Seidel, K., Kumar, A., Arruda, T.M., Kalinin, S.V., Schlösser, T., Boschke, R., van Bentum, R., Schröder, U., Mikolajick, T., IEEE Int. Electron Devices Mtg. (Washington, DC, 2013), pp. 10.8.110.8.4.Google Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 411
Total number of PDF views: 1381 *
View data table for this chart

* Views captured on Cambridge Core between 10th May 2018 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *