Skip to main content Accessibility help
×
Home

Omariniite, Cu8Fe2ZnGe2S12, the germanium analogue of stannoidite, a new mineral species from Capillitas, Argentina

  • Luca Bindi (a1) (a2), Hubert Putz (a3), Werner H. Paar (a4) and Christopher J. Stanley (a5)

Abstract

Omariniite, ideally Cu8Fe2ZnGe2S12, represents the Ge-analogue of stannoidite and was found in bornite-chalcocite-rich ores near the La Rosario vein of the Capillitas epithermal deposit, Catamarca Province, Argentina. The mineral is associated closely with three other Ge-bearing minerals (putzite, catamarcaite, rarely zincobriartite) and bornite, chalcocite, digenite, covellite, sphalerite, tennantite, luzonite, wittichenite, thalcusite and traces of mawsonite. The width of the seams rarely exceeds 60 μm, their length can attain several 100 μm. The mineral is opaque, orange-brown in polished section, has a metallic lustre and a brownish-black streak. It is brittle, and the fracture is irregular to subconchoidal. Neither cleavage nor parting are observable in the sections. In plane-polarized light omariniite is brownish-orange and has a weak pleochroism. Internal reflections are absent. The mineral is distinctly anisotropic with rotation tints varying between brownish-orange and greenish-brown. The average result of 45 electron-microprobe analyses is Cu 42.18(34), Fe 9.37(26), Zn 5.17(43), In 0.20(6), Ge 11.62(22), S 31.80(20), total 100.34(46) wt.%. The empirical formula, based on Σ(Me + S) = 25, is Cu8.04(Fe2.03In0.02)Σ2.05Zn0.96 Ge1.94S12.01, ideally Cu8 +Fe2 +Zn2+Ge2 4+S12 2-. Omariniite is orthorhombic, space group I222, with unit-cell parameters: a = 10.774(1), b = 5.3921(5), c = 16.085(2) Å, V = 934.5(2) Å3, a:b:c = 1.9981:1:2.9831, Z = 2. X-ray single-crystal studies (R 1 = 0.023) revealed the structure to be a sphalerite derivative identical to that of stannoidite. Omariniite is named after Dr. Ricardo Héctor Omarini (1946–2015), Professor at the University of Salta, for his numerous contributions to the geology of Argentina.

Copyright

Corresponding author

References

Hide All
Bindi, L., Keutsch, F.N. and Zaccarini, F. (2016) Spryite, IMA 2015-116. CNMNC Newsletter No. 30, April 2016, page 412.Mineralogical Magazine, 80, 407413.
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.
Effenberger, H., Lengauer, C.L., Libowitky, E., Putz, H. and Topa, D. (2015) Lislkirchnerite, IMA 2015-064.
CNMNC Newsletter No. 27, October 2015, page 1230. Mineralogical Magazine, 79, 1229–1236.
Eulenberger, G. (1977) Die Kristallstruktur der Tieftemperaturmodifikation von Ag8GeS6 . Monatshefte für Chemie, 108, 901913.
Goh, S.W., Buckley, A.N., Lamb, R.N., Rosenberg, R.A. and Moran, D. (2006) The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air. Geochimica et Cosmochimica Acta, 70, 22102228.
Höll, R., Kling, M. and Schroll, E. (2007) Metallogenesis of germanium – a review. Ore Geology Reviews, 30, 145180.
Kato, A. (1969) Stannoidite, Cu5(Fe,Zn)2SnS8, a new stannite-like mineral from the Konjo mine, Okayama Prefecture, Japan. Bulletin of the National Science Museum Tokyo, 12, 165172.
Knight, K.S., Marshall, W.G. and Zochowski, S.W. (2011) The low temperature and high-pressure thermoelastic and structural properties of chalcopyrite, CuFeS2 . The Canadian Mineralogist, 49, 10151034.
Kraus, W. and Nolze, G. (1996) PowderCell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.
Kudoh, Y. and Takéuchi, Y. (1976) The superstructure of stannoidite. Zeitschrift für Kristallographie, 144, 145160.
Márquez-Zavalía, M.F. (1988) Mineralogía y genesis del yacimiento Capillitas (Catamarca, Republica Argentina). PhD thesis, University of Salta, Argentina.
Márquez-Zavalía, M.F. (1999) El yacimiento Capillitas, Catamarca. Pp. 16431652 in: Recursos minerals de la República Argentina (Zappettini, O., editor). Instituto de Geología y Recursos Minerales SEGEMAR, Anales 35.
Márquez-Zavalía, M.F., Galliski, M.A., Drábek, M., Vymazalová, A., Watanabe, Y., Murakami, H. and Bernhardt, H.-J. (2015) Ishiharaite, (Cu,Ga,Fe,In,Zn) S, a new mineral from the Capillitas mine, Northwestern Argentina. The Canadian Mineralogist, 52, 969980.
McDonald, A.M., Stanley, C.J., Ross, K.C. and Nestola, F. (2016) Zincobriartite, IMA 2015-094. CNMNC Newsletter No. 29, February 2016, page 203. Mineralogical Magazine, 80, 199205.
Melcher, F. (2003) The Otavi Mountain Land in Namibia: Tsumeb, germanium and snowball earth. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 148, 413435.
Oxford Diffraction (2006) CrysAlis RED (Version 1.171.31.2) and ABSPACK in CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Paar, W.H. and Putz, H. (2005) Germanium associated with epithermal mineralization: examples from Bolivia and Argentina. 8th Biennial SGA Meeting (Beijing), Proceedings 3, 4851.
Paar, W.H., Roberts, A.C., Berlepsch, P., Armbruster, T., Topa, D. and Zagler, G. (2004) Putzite, (Cu4.7Ag3.3)Σ8 GeS6, a new mineral species from Capillitas, Catamarca, Argentina: description and crystal structure. The Canadian Mineralogist, 42, 17571769.
Putz, H. (2005) Mineralogy and Genesis of Epithermal Ore Deposits at Capillitas, Catamarca Province, NW-Argentina. PhD thesis, Salzburg University, Austria.
Putz, H., Paar, W.H., Sureda, R.J. and Roberts, A.C. (2002) Germanium mineralization at Capillitas, Catamarca Province, Argentina. 18th General Meeting of the IMA, (Edinburgh), Abstracts, 265.
Putz, H., Paar, W.H., Topa, D., Makovicky, E. and Roberts, A.C. (2006) Catamarcaite, Cu6GeWS8, a new germanium sulfide mineral species from Capillitas, Catamarca, Argentina: Description, Paragenesis and Crystal Structure. The Canadian Mineralogist, 44, 14811497.
Putz, H., Paar, W.H. and Topa, D. (2009) A contribution to the knowledge of the mineralization at Capillitas, Catamarca. Revista de la Asociación Argentina, 64(3), 514524.
Sasso, A.M. (1997) Geological Evolution and Metallogenetic Relationships of the Farallón Negro Volcanic Complex, NW Argentina. PhD thesis, Queen's University, Kingston, Ontario, Canada.
Sasso, A.M. and Clark, A.H. (1998) The Farallon Negro group, northwest Argentina: magmatic, hydrothermal and tectonic evolution and implications for Cu-Au metallogeny in the Andean back-arc. Society of Economic Geology, Newsletter, 34, 118.
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.
Yamanaka, T. and Kato, A. (1976) Mössbauer effect study of 57Fe and 119Sn in stannite, stannoidite, and mawsonite. American Mineralogist, 61, 260265.
Young, B.B. and Millman, A.P. (1964) Microhardness and deformation characteristics of ore minerals. Transactions of the Institution of Mining and Metallurgy, 73, 437466.
Wilson, A.J.C. (Editor) (1992) International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic, Dordrecht, The Netherlands.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed