Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T09:19:49.319Z Has data issue: false hasContentIssue false

Anzaite-(Ce), a new rare-earth mineral and structure type from the Afrikanda silicocarbonatite, Kola Peninsula, Russia

Published online by Cambridge University Press:  02 January 2018

A. R. Chakhmouradian*
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
M. A. Cooper
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
L. Medici
Affiliation:
Istituto di Metodologie per l’Analisi Ambientale, Tito Scalo, 85050 Potenza, Italy
Y. A. Abdu
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
Y. S. Shelukhina
Affiliation:
Faculty of Geology, St Petersburg State University, St Petersburg, 199034, Russia

Abstract

Anzaite-(Ce), ideally Ce43+Fe2+Ti6O18(OH)2, is a new, structurally complex mineral occurring as scarce minute crystals in hydrothermally altered silicocarbonatites in the Afrikanda alkali-ultramafic complex of the Kola Peninsula, Russia. The mineral is a late hydrothermal phase associated with titanite, hibschite, clinochlore and calcite replacing the primary magmatic paragenesis. The rare-earth elements (REE) (dominated by Ce), Ti and Fe incorporated in anzaite-(Ce) were derived from primary Ti oxides abundant in the host rock. Anzaite-(Ce) is brittle and lacks cleavage; the density calculated on the basis of structural data is 5.054(6) g cm–3. The mineral is opaque and grey with a bluish hue in reflected light; its reflectance values range from 15–16% at 440 nm to 13–14% at 700 nm. Its infrared spectrum shows a prominent absorption band at 3475 cm–1 indicative of OH groups. The average chemical composition of anzaite-(Ce) gives the following empirical formula calculated on the basis of 18 oxygen atoms and two OH– groups: (Ce2.18Nd0.85La0.41Pr0.26Sm0.08Ca0.36Th0.01)Σ4.15Fe0.97(Ti5.68Nb0.22Si0.04)Σ5.94O18(OH)2. The mineral is monoclinic, space group C2/m, a = 5.290(2), b = 14.575(6), c = 5.234(2) Å, β = 97.233(7)°, V = 400.4(5) Å3, Z = 1. The ten strongest lines in the X-ray micro-diffraction pattern are [dobs in Å (I)hkl]: 2.596 (100) 002; 1.935 (18) 170; 1.506 (14) 133; 1.286 (13) 1.11.0; 2.046 (12) 241; 1.730 (12) 003; 1.272 (12) 0.10.2; 3.814 (11) 111; 2.206 (9) 061; 1.518 (9) 172. The structure of anzaite-(Ce), refined by single-crystal techniques to R1 = 2.1%, consists of alternating layers of type 1, populated by REE (+ minor Ca) in a square antiprismatic coordination and octahedrally coordinated Fe2+, and type 2, built of five-coordinate and octahedral Ti, stacked parallel to (001). This atomic arrangement is complicated by significant disorder affecting the Fe2+, five-coordinate Ti and two of the four anion sites. The order-disorder pattern is such that only one half of these positions in total occupy any given (010) plane, and the disordered (010) planes are separated by ordered domains comprising REE, octahedral Ti and two anion sites occupied by O2–. Structural and stoichiometric relations between anzaite-(Ce) and other REE-Ti (±Nb, Ta) oxides are discussed. The name anzaite-(Ce) is in honour of Anatoly N. Zaitsev of St Petersburg State University (Russia) and The Natural History Museum (UK), in recognition of his contribution to the study of carbonatites and REE minerals. The modifier reflects the prevalence of Ce over other REE in the composition of the new mineral.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonazzi, P. and Menchetti, S. (1999) Crystal chemistry of aeschynite-(Y) from the Western Alps: residual electron density on difference-Fourier map. European Journal of Mineralogy, 11, 10431049.CrossRefGoogle Scholar
Borodin, L.S., Nazarenko, I.I. and Rikhter, T.L. (1956) On the new mineral zirconolite, a complex oxide of AB3O7 type. Doklady Akademii Nauk SSSR, 110, 845848.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Ada Crystallographica, B47, 192197.Google Scholar
Chakhmouradian, A.R. (2004) Crystal chemistry and paragenesis of compositionally unique (A1-, Fe-, Nb-and Zr-rich) titanite from Afrikanda, Russia. American Mineralogist, 89, 17521762.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Zaitsev, A.N. (1999) Calcite-amphibole-clinopyroxene rock from the Afrikanda complex, Kola Peninsula (Russia): mineralogy and a possible link to carbonatites. Part I: Oxide minerals. The Canadian Mineralogist, 37, 177198.Google Scholar
Chakhmouradian, A.R. and Zaitsev, A.N. (2002) Calcite-amphibole-clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. III. Silicate minerals. The Canadian Mineralogist, 40, 13471374.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Zaitsev, A.N. (2004) Afrikanda: an association of ultramafic, alkaline and alkali-silica-rich carbonatitic rocks from mantle-derived melts. Pp. 247291 in: Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province (F. Wall and Zaitsev, A.N. , editors). Mineralogical Society of Great Britain and Ireland, London.Google Scholar
Chakhmouradian, A.R., Mitchell, R.H., Pankov, A.Y and Chukanov, N.Y (1999) Loparite and ‘metaloparite’ from the Burpala alkaline complex, Baikal Alkaline Province (Russia). Mineralogical Magazine, 63, 519534.CrossRefGoogle Scholar
Chakhmouradian, A.R., Cooper, M.A., Medici, L., Hawthorne, F. and Adar, F. (2008) Fluorine-rich hibschite from silicocarbonatite, Afrikanda complex, Russia: crystal chemistry and conditions of crystallization. The Canadian Mineralogist, 46, 10331042.CrossRefGoogle Scholar
Chakhmouradian, A.R., Cooper, M.A., Medici, L., Abdu, YA. and Shelukhina, YS. (2013) Anzaite-(Ce), IMA 2013-004. CNMNC Newsletter No. 16, August 2013, page 2701. Mineralogical Magazine, 11, 26952709.Google Scholar
Chtoun, E.H., Hanebali, L. and Gamier, P. (2001) Analyse par diffraction des rayons X, methode de Rietveld, de la structure des solutions solides (l-x)A2Ti207-xFe2Ti05 A = Eu, Y. Annales de Chimie Science des Materiaux, 26, 2732.CrossRefGoogle Scholar
Hammer, V.M.F., Libowitzky, E. and Rossman, G.R. (1998) Single-crystal IR spectroscopy of very strong hydrogen bonds in pectolite, NaCa2[Si308(0H)], and serandite, NaMn2[Si308(0H)]. American Mineralogist, 83, 569576.Google Scholar
Helean, K.B., Ushakov, S.V, Brown, C.E., Navrotsky, A., Lian, J., Ewing, R.C., Farmer, J.M. and Boatner, L.A. (2004) Formation enthalpies of rare earth titanate pyrochlores. Journal of Solid State Chemistry, 111, 18581866.CrossRefGoogle Scholar
Holland, T.J.B. and Redfern, S.AT. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Kramm, U., Kogarko, L.N., Kononova, YA. and Vartiainen, H. (1993) The Kola Alkaline Province of the CIS and Finland: precise Rb-Sr ages define 380—360 Ma age range for all magmatism. Lithos, 30, 33–14.CrossRefGoogle Scholar
Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., Bagdasaiov, E.A., Rimskaya-Korsakova, O.M., Nefedov, YL, llyins-kiy, G.A., Sergeyev, A.C. and Abakumova, N.B. (1965) The Caledonian Complex of Ultrabasic Alkaline Rocks and Carbonatites of the Kola Peninsula and Northern Karelia. Nedra Press, Moscow.Google Scholar
Mitchell, R.H. and Chakhmouradian, A.R. (1998) Th-rich loparite from the Khibina alkaline complex, Kola Peninsula: isomorphism and paragenesis. Mineralogical Magazine, 62, 341353.CrossRefGoogle Scholar
Nickel, E.H., Grey, I.E. and Madsen, I.C. (1987) Lucasite-(Ce), CeTi2(O,OH)6, a new mineral from Western Australia: Its description and crystal structure. American Mineralogist, 72, 10061010.Google Scholar
Pekov, I.Y, Petersen, O.Y and Voloshin, A.Y (1997) Calcio-ancylite-(Ce) from Ilimaussaq and Narssarssuk, Greenland, Kola Peninsula and Polar Urals, Russia; ancylite-(Ce)—calcio-ancylite-(Ce) an isomorphous series. Neues Jahrbuch fur Mineralogie, Abhandlungen, 171, 309322.Google Scholar
Pekov, I.Y, Turchkova, A.G. and Kulikova, I.M. (2001) Barium and potassium zeolites from the Afrikanda alkaline massif (Kola Peninsula). Proceedings of the Workshop on Alkaline Magmatism, Moscow, pp. 56-57.Google Scholar
Pekov, I.V., Schneider, J. and Pushcharovsky, D.Y. (2004) On the X-ray powder diffractogram of kassite and its relationship with cafetite. Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva, 133(3), 51—54.Google Scholar
Reguir, E.P., Camacho, A., Yang, P., Chakhmouradian, A. R., Kamenetsky, YS. and Halden, N.M. (2010) Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS. Mineralogy and Petrology, 100, 95103.CrossRefGoogle Scholar
Ruiz, A.I., Lopez, M.L., Pico, C. and Veiga, M.L. (2002) New La2/3TiO3 derivatives: structure and impedance spectroscopy. Journal of Solid State Chemistry, 163, 472–178.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Ada Crystallographica, A64, 112122.Google Scholar
Thorogood, G.J., Avdeev, M. and Kennedy, BJ. (2010) Structural studies of the aeschynite-euxenite transformation in the series Ln(TiTa)Og Ln = Lanthanide. Solid State Sciences, 12, 12631269.CrossRefGoogle Scholar
Tosoni, S., Doll, K and Ugliengo, P. (2006) Hydrogen bond in layered materials: structural and vibrational properties of kaolinite by a periodic B3LYP approach. Chemistry of Materials, 18, 21352143.CrossRefGoogle Scholar
Wall, F. and Zaitsev, A.N. (2004) Rare earth minerals in Kola carbonatites. Pp. 43-72 in: Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province (F. Wall and Zaitsev, A.N. , editors). Mineralogical Society of Great Britain and Ireland, London.CrossRefGoogle Scholar
Xu, H., Zhao, Y, Vogel, S.C., Daemen, L.L. and Hickmott, D.D. (2007) Anisotropic thermal expansion and hydrogen bonding behaviour of portlandite: a high-temperature neutron diffraction study. Journal of Solid State Chemistry, 180, 15191525.CrossRefGoogle Scholar
Zaitsev, A.N. and Chakhmouradian, A.R. (2002) Calcite-amphibole-clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. II. Oxysalt minerals. The Canadian Mineralogist, 40, 103120.CrossRefGoogle Scholar
Zaitsev, A.N., Wall, F. and Le Bas, M.J. (1998) REE-Sr-Ba minerals from the Khibina carbonatites, Kola Peninsula, Russia: their mineralogy, paragenesis and evolution. Mineralogical Magazine, 62, 225250.CrossRefGoogle Scholar
Zaitsev, A.N., Keller, J., Spratt, J., Perova, E.N. and Kearsley, A. (2008) Nyerereite-pirssonite-calcite-shortite relationships in altered natrocarbonatites, Oldoinyo Lengai, Tanzania. The Canadian Mineralogist, 46, 843860.CrossRefGoogle Scholar
Zaitsev, A.N., Sitnikova, M.A., Subbotin, YY, Fernandez-Suarez, J. and Jeffries, T.E. (2004) Sallanlatvi Complex-a rare example of magnesite and siderite carbonatites. Pp. 201245 in: Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province (F. Wall and Zaitsev, A. N., editors). Mineralogical Society of Great Britain and Northern Ireland, London.Google Scholar
Zaitsev, A.N., Chakhmouradian, A.R., Siidra, O.I., Spratt, L, Williams, C.T., Stanley, C.J., Petrov, S.Y, Britvin, S.N. and Polyakova, E.A. (2011) Fluorine-, yttrium-and lanthanide-rich cerianite from carbonatitic rocks of the Kerimasi volcano and surrounding explosion craters, Gregory Rift, northern Tanzania. Mineralogical Magazine, 75, 28012810.CrossRefGoogle Scholar
Zheng, Z., Lumpkin, G.R., Howard, C.J., Knight, K.S., Whittle, K.R. and Osaka, K (2007) Structures and phase diagrams for the system CaTiO3—La2/3Ti03 . Solid State Chemistry, 180, 10831092.CrossRefGoogle Scholar
Supplementary material: File

Chakhmouradian et al. supplementary material

Structure factors

Download Chakhmouradian et al. supplementary material(File)
File 32.3 KB
Supplementary material: File

Chakhmouradian et al. supplementary material

CIF

Download Chakhmouradian et al. supplementary material(File)
File 18.5 KB