Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-jhk7w Total loading time: 0.674 Render date: 2021-04-22T00:37:34.179Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Toxicity of Visible Light Follows a Rule Similar to that for X-Ray Damage

Published online by Cambridge University Press:  15 March 2018

Rino Saiga
Affiliation:
Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
Ryuta Mizutani
Affiliation:
Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

[]
Type
Letter to the Editor
Copyright
Copyright © Microscopy Society of America 2018 

The paper entitled “Less is More: Longer Exposure Times with Low Light Intensity is Less Photo-Toxic” published in the November 2017 issue of Microscopy Today [Reference Mubaid and Brown1] reports an interesting study regarding the relationships between the light intensity and its biological effects. The authors of this paper suggested that one can eliminate the photo-toxicity by lowering “temporal light dose.” We would like to propose an alternative parameter that can better describe the results: light power.

In the abovementioned paper, the “temporal light dose” (mW/s) seems to be calculated by dividing the light power (mW) by the exposure time (s). However, the light power (mW) itself is defined as the rate of energy transfer per second (mJ/s) and is already divided by time. The dimension of the “temporal light dose” represents time variation of the light power, although no information regarding the time variation of the light power is presented in the paper.

A plausible parameter “light dose” (mJ) can be calculated by multiplying the light power (mW) by the exposure time (s). For the conditions shown in Table 1 of the abovementioned paper, the light dose is 0.57, 0.47, 0.42, or 0.39 mJ for the experiment using the light power of 1.64, 6.68, 12.03, or 22.10 mW, respectively. Differences between these light doses are small. This is already stated by the authors that “the total light exposure to the sample was similar for each image”. Therefore, the light power rather than the light dose should be the essential factor of the photo-toxicity.

Figure 1 of the abovementioned paper [Reference Mubaid and Brown1] shows a pseudo-linear relationship between the photo-bleaching decay rate and the “temporal light dose.” However, the decay rate shows an exponential correlation by plotting it against the light power (Figure 1 (revised)).

Figure 1 (revised) Photo-bleaching rates for fixed cells.

This is consistent with the exponential model of the biological effect of X-ray or UV irradiation [Reference Bodgi2], suggesting that the toxicity of visible light follows a rule similar to that of the X-ray damage. Thus, Figures 2, 3, 7, and 8, as well as the text and Table 1 [Reference Mubaid and Brown1], should be reinterpreted by taking this into account. The results indicate that the photo-toxicity can be eliminated in an exponential manner by lowering the light power. This reinterpretation will not impair the paper contents, but rather it strengthens the findings originally reported in the abovementioned paper [Reference Mubaid and Brown1].

References

[1] Mubaid, F and Brown, CM, Microscopy Today 25(6) (2017) 2633.CrossRefGoogle Scholar
[2] Bodgi, L et al., J Theor Biol 394 (2016) 93101.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 32
Total number of PDF views: 103 *
View data table for this chart

* Views captured on Cambridge Core between 15th March 2018 - 22nd April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Toxicity of Visible Light Follows a Rule Similar to that for X-Ray Damage
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Toxicity of Visible Light Follows a Rule Similar to that for X-Ray Damage
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Toxicity of Visible Light Follows a Rule Similar to that for X-Ray Damage
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *