Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T02:34:43.841Z Has data issue: false hasContentIssue false

Testing Parameters for Two-Dimensional Crystallization and Electron Crystallography on Eukaryotic Membrane Proteins with Liposomes as Controls

Published online by Cambridge University Press:  14 March 2018

Gengxiang Zhao
Affiliation:
Georgia Institute of Technology, School of Biology, School of Chemistry and Biochemistry, Atlanta, GA
Vasantha Mutucumarana
Affiliation:
The University of North Carolina, Dept. of Biology and Center for Thrombosis and Hemostasis, Chapel Hill, North Carolina
Darrel W. Stafford
Affiliation:
The University of North Carolina, Dept. of Biology and Center for Thrombosis and Hemostasis, Chapel Hill, North Carolina
Yoshihide Kanaoka
Affiliation:
Dept. of Medicine, Harvard Medical School and Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Boston, MA
K. Frank Austen
Affiliation:
Dept. of Medicine, Harvard Medical School and Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Boston, MA
Ingeborg Schmidt-Krey*
Affiliation:
Georgia Institute of Technology, School of Biology, School of Chemistry and Biochemistry, Atlanta, GA

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Membrane proteins comprise the majority of known and potential drug targets, yet have been immensely difficult to analyze at the structural level due to their location in the membrane bilayer. Removal from the membrane necessitates replacement of the phospholipid bilayer by detergents in order to maintain protein solubility. However, the absence of lipids and the presence of detergents can render non-physiological conformational changes of the membrane protein (Tate, 2006). Electron crystallography is an important method for studying membrane proteins that usually takes advantage of reconstituting the protein in a phospholipid bilayer and removal of the detergent. Richard Henderson and Nigel Unwin used this technique to elucidate the three-dimensional (3D) arrangement of the transmembrane α-helices of bacteriorhodopsin, which was the first 3D structural information on a membrane protein (Henderson and Unwin, 1975).

Type
Research Article
Copyright
Copyright © Microscopy Society of America 2008

References

Amos, L. A., Henderson, R. & Unwin, P.N.T. (1982) Prog. Biophys. Molec. Biol. 39, 183231.CrossRefGoogle Scholar
Cheng, A., Leung, A., Fellmann, D., Quispe, J., Suloway, C., Pulokas, J., Abeyrathne, P. D., Lam, J. S., Carragher, B. & Potter, C. S. (2007) J. Struct. Biol. 160, 324331.Google Scholar
Engel, A., Holzenburg, A., Stauffer, K., Rosenbusch, J. & Aebi, U. in: Bailey, G. W. (Ed.) Proceedings of the 46th Annual Meeting of the Electron Microscopical Society of America, San Francisco Press, San Francisco, 1988, pp. 152 – 153.CrossRefGoogle Scholar
Fujiyoshi, Y. (1998) Adv. Biophys, 35, 2580.Google Scholar
Gipson, B. , Zeng, X. & Stahlberg, H. (2007) J. Struct. Biol. 160, 375384.Google Scholar
Gonen, T., Cheng, Y., Sliz, P., Hiroaki, Y., Fujiyoshi, Y., Harrison, S. C. & Walz, T. (2005) Nature 438, 633638.Google Scholar
Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckman, E. & Downing, K. H. (1990) J. Mol. Biol. 213, 899929.CrossRefGoogle Scholar
Hiroaki, Y., Tani, K., Kamegawa, A., Gyobu, N., Nishikawa, K., Suzuki, H., Walz, T., Sasaki, S., Mitsuoka, K., Kimura, K., Mizoguchi, A. & Fujiyoshi, Y. (2006) J. Mol. Biol. 355, 628639.CrossRefGoogle Scholar
Holm, P. J., Bhakat, P., Jegerschold, C., Gyobu, N., Mitsuoka., K., Fujiyoshi, Y., Morgenstern, R. & Hebert, H. (2006) J. Mol. Biol. 360, 934-945.CrossRefGoogle Scholar
Kuhlbrandt, W. (1992) Q. Rev. Biophys. 25, 149.CrossRefGoogle Scholar
Kuhlbrandt, W., Wang, D. N. & Fujiyoshi, Y. (1994) Nature 367, 614621.Google Scholar
Lowe, J., Li, H., Downing, K. H. & Nogales, E. (2001) J. Mol. Biol. 313, 10451057.CrossRefGoogle Scholar
Miyazawa, A., Fujiyoshi, Y. & Unwin, N. (2003) Nature 423, 949955.Google Scholar
Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J. B., Engel, A. & Fujiyoshi, Y. (2000) Nature 407, 599 – 605.Google Scholar
Nakamura, N., Fujiyoshi, Y., Mitsuoka, K., Murata, K. & Shinkawa, T. (2003) Microsc. Microanal. 9 (suppl. 2) 10381039.CrossRefGoogle Scholar
Nogales, E., Wolf, S. G. & Downing, K. H. (1998) Nature 391 199203.Google Scholar
Ren, G., Reddy, V. S., Cheng, A., Melnyk, P. & Mitra, A. K. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 13981403.Google Scholar
Schmidt-Krey, I. (2007) Methods 41, 417426.Google Scholar
Schmidt-Krey, I., Mutucumarana, V., Haase, W., Stafford, D. W. & Kuhlbrandt, W. (2007) (2007) J. Struct. Biol. 157, 437442.CrossRefGoogle Scholar
Stahlberg, H., Fotiadis, D., Scheuring, S., Remigy, H., Braun, T., Mitsuoka, K., Fujiyoshi, Y. & Engel, A. (2001) FEBS Letters 504, 166 – 72.Google Scholar
Tate, C. (2006) Curr. Opin. Struct. Biol. 16, 457464.Google Scholar
Vink, M., Derr, K. D., Love, J., Stokes, D. L. & Ubarretxena-Belandia, I. (2007) J. Struct. Biol. 160, 295304.Google Scholar
Werten, P. J. L., Remigy, H.-W., de Groot, B. L., Fotiadis, D., Philippsen, A., Stahlberg, H., Grubmueller, H. & Engel, A. (2002) FEBS Letters 529, 6572.CrossRefGoogle Scholar