Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-10T02:47:23.996Z Has data issue: false hasContentIssue false

Nanoelectromechanics of Inorganic and Biological Systems: From Structural Imaging to Local Functionalities

Published online by Cambridge University Press:  14 March 2018

Brian J. Rodriguez
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN
Sergei V. Kalinin*
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN
Stephen Jesse
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN
G. Thompson
Affiliation:
Clemson University, Department of Bioengineering, Clemson, SC
A. Vertegel
Affiliation:
Clemson University, Department of Bioengineering, Clemson, SC
Sophia Hohlbauch
Affiliation:
Asylum Research, Santa Barbara, CA
Roger Proksch
Affiliation:
Asylum Research, Santa Barbara, CA

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Coupling between electrical and mechanical phenomena is extremely common in inorganic materials, and nearly ubiquitous in biological systems, underpinning phenomena and devices ranging from SONAR to cardiac activity and hearing. This paper briefly summarizes the Scanning Probe Microscopy (SPM) approach, referred to as Piezoresponse Force Microscopy (PFM), for probing electromechanical coupling on the nanometer scales, and delineates some existing and emerging applications to probe local structure and functionality in inorganic ferroelectrics, calcified and connective tissues, and complex biosystems based on electromechanical detection.

Type
Research Article
Copyright
Copyright © Microscopy Society of America 2008

References

1 Lines, ME, Glass, AM. 1977. Principles and Applications of Ferroelectric and Related Materials. Oxford: Clarendon Press Google Scholar
2 Uchino, K., Ferroelectric Devices (Marcel Dekker Inc., New York 2000).Google Scholar
3 Scott, J. 2000. Ferroelectric Memories. Berlin: Springer Verlag CrossRefGoogle Scholar
4 Kalinin, S. V., Rodriguez, B. J., Jesse, S. Karapetian, E. Eliseev, E. A., Morozovska, A. N., Annu. Rev. Mat. Sci. 37: 189-238 (2007).CrossRefGoogle Scholar
5 Nanoscale Characterization of Ferroelectric Materials, ed. Alexe, M. and Gruverman, A. (Springer-Verlag, Berlin 2004).Google Scholar
6 Kalinin, S. V., Rodriguez, B. J., Jesse, S. Shin, J. Baddorf, A. P., Gupta, P. Jain, H. Williams, D. B., and Gruverman, A., Microscopy and Microanalysis 12, 206-20 (2006).Google Scholar
7 Cho, Y. Hashimoto, S. Odagawa, N. Tanaka, K. and Hiranaga, Y., Nanotechnology 17, S137 (2006)Google Scholar
8 Kalinin, S. V., Bonnell, D. A., Alvarez, T. Lei, X. Hu, Z. Ferris, J. H., Nano Lett. 2, 589-93 (2002).Google Scholar
9 Rodriguez, B. J., Gruverman, A. Kingon, A. I., Nemanich, R. J., and Ambacher, O., Appl. Phys. Lett. 80, 4166 (2002).Google Scholar
10 Rodriguez, B. J., Jesse, S. Kalinin, S. V., Kim, J. Ducharme, S. and Fridkin, V., Appl. Phys. Lett. 90, 122904 (2007).Google Scholar
11 Kalinin, S. V., Rodriguez, B. J., Jesse, S. Thundat, T. and Gruverman, A., Appl. Phys. Lett. 87, 053901 (2005).CrossRefGoogle Scholar