Skip to main content Accessibility help
×
Home

The Ascent of 3D X-ray Microscopy in the Laboratory

  • Arno P. Merkle (a1) and Jeff Gelb (a1)

Extract

X rays are universally valued for their ability to penetrate opaque objects. It is only within the past few decades that their short wavelengths have also been exploited to provide 3D imaging of the objects' interiors with resolution well beyond that of light microscopy (LM) in a wide variety of applications. This article explores X-ray imaging as a quantitative sub-micron nanoscale microscopy technique, and specifically its emergent role within the context of the central microscopy laboratory.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Ascent of 3D X-ray Microscopy in the Laboratory
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Ascent of 3D X-ray Microscopy in the Laboratory
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Ascent of 3D X-ray Microscopy in the Laboratory
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
[1]Tkachuk, A, Duewer, F, Cui, H, Feser, M, Wang, S, and Yun, W, Z Kristallogr 222 (2007) 650–55.
[2]Gelb, J, Ad Mat Proc, 170(10) (2012) 1418.
[3]Yuan, Q, Zhang, K, Hong, Y, Huang, W, Gao, K, Wang, Z, Zhu, P, Gelb, J, Tkachuk, A, Feser, M, Yun, W, and Wu, Z, J Synch Rad 19(6) (2012) 1021–28.
[4]Wang, J, Chen, Y-C K, Yuan, Q, Tkachuk, A, Erdonmez, C et. al., Appl Phys Lett 100(14) (2012) 143107–10.
[5]Andrews, JC, Brennan, S, Patty, C, Luening, K, Pianetta, P, Almeida, E, van der Muelen, MCH, Feser, M, Gelb, J, Rudati, J, Tkachuk, A, and Yun, W, Synch Rad News 21(3) (2008) 1726.
[6]Tian, Y, Li, W, Chen, J, Liu, L, Liu, G, Tkachuk, A, Tian, J, Xiong, Y, Gelb, J, Hsu, G, and Yun, W, Rev Sci Inst 79(10) (2008) 103708.
[7]Chu, YS, Yi, JM, De Carlo, F, Shen, Q, Lee, W-K, Wu, HJ, Wang, CL, Wang, JY, Liu, CJ, Wang, CH, Wu, SR, Chien, CC, Hwu, Y, Tkachuk, A, Yun, W, Feser, M, Liang, KS, Yang, CS, Je, JH, and Margaritondo, G, Appl Phys Lett 92 (2008) 103119–21.
[8]Shearing, PR, Bradley, RS, Gelb, J, Lee, SN, Atkinson, A, Withers, PJ, and Brandon, NP, Electrochem Solid St 14(10) (2011) B117–20.
[9]Guan, Y, Gong, Y, Li, W, Gelb, J, Zhang, L, Liu, G, Zhang, X, Song, X, Xia, C, Xiong, Y, Wang, H, Wu, Z, and Tian, Y, J Power Sources 196(24) (2011) 10601–05.
[10]Shearing, PR, Bradley, RS, Gelb, J, Tariq, F, Withers, PJ, and Brandon, NP, Solid State Ionics 216 (2012) 6972.
[11]Gelb, J, Roth, S, Dong, H, Li, D, Gu, A, Yun, S, and Yun, W, Proc SCA (2012) SCA2012-59.
[12]Epting, W, Gelb, J, and Litster, S, Adv Func Mat 22(3) (2011) 555–60.
[13]Shearing, PR, Gelb, J, and Brandon, NP, J Eur Ceram Soc 30 (2010) 1809–14.
[14]Shearing, PR, Brandon, NP, Gelb, J, Bradley, R, Withers, PJ, Marquis, AJ, Cooper, S, and Harris, SJ, J Electrochem Soc 159(7) (2012) A1023–27.
[15]Kehrwald, D, Shearing, PR, Brandon, NP, Sinha, PK, and Harris, SJ, J Electrochem Soc 158(12) (2011) A1393–99.
[16]Jhong, H-R, Brushett, FR, Yin, L, Stevenson, D, and Kenis, PJA, J Electrochem Soc. 159(3) (2012) B292–98.
[17]Chao, S-C, Yen, Y-C, Song, Y-F, Chen, Y-M, Wu, H-C, and Wu, N-L, Electrochem Comm 12 (2010) 234237.
[18]Nelson, J, Misra, S, Yang, Y, Jackson, A, Liu, Y, Wang, H, Dai, H, Andrews, JC, Cui, Y, and Toney, MF, J Am Chem Soc 134 (2012) 6337–43.
[19]Patterson, BM, Henderson, K, Smith, Z, Zhang, D, and Giguere, P, Microscopy & Analysis 26(2) (2012) S4S7.
[20]Litster, S, Hess, K, Epting, W, and Gelb, J, ECS Trans 41(1) (2011) 409–18.
[21]Metscher, B, Dev Dyn 238 (2009) 632–40.
[22]Priester, J, Ge, Y, Mielke, RE, Horst, AM, Moritz, SC, Espinosa, K, Gelb, J, Walker, SL, Nisbet, RM, An, Y-J, Schimel, JP, Palmer, RG, Hernandez-Viezcas, JA, Zhao, L, Gardea-Torresdey, JL, and Holden, PA, PNAS 109(37) (2012) E2451–56.
[23]Carlson, D, Evans, J, and Gelb, J, Micros Microanal, in press.
[24]Kim, FH, Penumadu, D, Gu, A, Yun, S, and Gelb, J, Proc SCA (2012) SCA2012-61.
[25]Roth, S, Li, D, Dong, H, and Blunt, MJ, Proc SCA (2012) SCA2012-02.

The Ascent of 3D X-ray Microscopy in the Laboratory

  • Arno P. Merkle (a1) and Jeff Gelb (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed