Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T02:04:49.203Z Has data issue: false hasContentIssue false

A Micro-Analytical Study of the Scarabs of the Necropolis of Vinha das Caliças (Portugal)

Published online by Cambridge University Press:  31 January 2019

Mafalda Costa
Affiliation:
Archaeometry Research Group, Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, B-9000 Ghent, Belgium HERCULES Laboratory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal
Ana Margarida Arruda
Affiliation:
UNIARQ – Archaeological Center of the University of Lisbon, Faculdade de Letras, Alameda da Universidade, 1600-214 Lisboa, Portugal
Rui Barbosa
Affiliation:
Arqueohoje, Rua da Escola, Lote 9, Loja 2, Santa Eulália, 3500-682 Viseu, Portugal
Pedro Barrulas
Affiliation:
HERCULES Laboratory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal
Peter Vandenabeele
Affiliation:
Archaeometry Research Group, Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, B-9000 Ghent, Belgium
José Mirão*
Affiliation:
HERCULES Laboratory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal Geosciences Department, School of Sciences and Technology, University of Évora, Colégio Luís António Verney, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
*
*Author for correspondence: José Mirão, jmirao@uevora.pt
Get access

Abstract

Five scarabs and one scaraboid found in Vinha das Caliças 4 (Beja, Portugal) were analyzed using a micro-analytical methodology in order to determine their mineralogical and chemical composition. Microstructural characterization and chemical analysis revealed that all were composed of a white body of crushed feldspathic sand covered by a lead-rich, alkaline-depleted silicate blue-green glaze showing evident signs of glass deterioration. Variable pressure scanning electron microscopy with X-ray energy dispersive spectrometry, handheld X-ray fluorescence spectroscopy, and micro X-ray diffraction results show that blue-green color of the glaze was produced by using copper ions (Cu2+) in conjunction with the lead antimonate bindheimite, a yellow-colored opacifier. The introduction of small amounts of tin in the structure of bindheimite enabled the production of a ternary Pb–Sb–Sn oxide. Tin, which was most likely added with the copper source (bronze scrapings), is known to facilitate the crystallization of bindheimite. The results are consistent with the five scarabs and one scaraboid being manufactured in Egypt. This study, the first archeometric study of scarabs found in the Iberian peninsula, has greatly contributed to the understanding of the influence of the Eastern and Central Mediterranean world in the Southwestern Iberia during the first millennium B.C.

Type
Material Sciences
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almagro-Gorbea, M & Torres Ortiz, M (2009). Los escarabeos Fenicios de Portugal. Un estado de la cuestión. Estudos Arqueológicos de Oeiras 17, 521554.Google Scholar
Arruda, AM (1999/2000). Los Fenicios en Portugal. Fenicios e indígenas en el centro y sur de Portugal (siglos VIII-VI a.C.). Barcelona: Universidad Pompeo Fabra.Google Scholar
Arruda, AM, Barbosa, R, Gomes, F & de Sousa, E (2016). A necrópole de vinha das caliças (Beja, Portugal). In Sidereum Ana III - El río Guadiana y Tartessos, Jiménez Ávila, J. (Ed.), pp. 187225. Mérida: Consórcio de la Ciudad Monumental Histórico-Artística y Arqueológica de Mérida.Google Scholar
Biron, I & Verità, M (2012). Analytical investigation on Renaissance Venetian enamelled glasses from the Louvre collections. J Archaeol Sci 39, 27062713.10.1016/j.jas.2012.03.014Google Scholar
Charleston, RJ (1960). Lead in glass. Archaeometry 3, 14.10.1111/j.1475-4754.1960.tb00508.xGoogle Scholar
Duckworth, CN, Henderson, J, Rutten, FJM & Nikita, K (2012). Opacifiers in Late Bronze Age glasses: The use of ToF-SIMS to identify raw ingredients and production techniques. J Archaeol Sci 39, 21432152.10.1016/j.jas.2012.02.011Google Scholar
Farges, F, Etcheverry, MP, Haddi, A, Trocellier, P, Curti, E & Brown, GE (2007). Durability of silicate glasses: An historical approach. AIP Conf Proc 882, 4450.10.1063/1.2644427Google Scholar
Frelih, M, Kramar, S, Dolenec, M & Česen, A (2015). Non-destructive analyses of Egyptian Amulets from the Slovene Ethnographic Museum. In Egypt and Austria VIII - Meetingpoint Egypt, Lazar, I. (Ed.), pp. 6372. Koper: Univerza na Primorskem, Znanstveno-raziskovalno središče, Inštitut za dediščino Sredozemlja.Google Scholar
Gomes, FB (2014). Importações Mediterrâneas em contextos ‘pós-Orientalizantes’ do Sul de Portugal (séculos VI-IV A.N.E.). Revista Onoba 2, 2744.Google Scholar
Gorton, AF (1996). Egyptian and Egyptianizing Scarabs. Oxford: Oxford University Press.Google Scholar
Gouda, VK, Youssef, GI & Ghany, NAA (2012). Characterization of Egyptian bronze archaeological artifacts. Surf Interface Anal 44, 13381345.10.1002/sia.5029Google Scholar
Griffiths, D (2006). Analysis of Egyptian faience vessel fragments excavated in Sidon in 2005. Archaeol Hist Lebanon 24, 129137.Google Scholar
Kaczmarczyk, A & Hedges, REM (1983). Ancient Egyptian Faience. Warminster: Aris & Phillips Ltd.Google Scholar
La Delfa, S, Ciliberto, E & Pirri, L (2008). Behaviour of copper and lead as chromophore elements in sodium silicate glasses. J Cult Herit 9, e117e122.10.1016/j.culher.2008.07.006Google Scholar
Lahlil, S, Cotte, M, Biron, I, Szlachetko, J, Menguye, N & Susinib, J (2011). Synthesizing lead antimonate in ancient and modern opaque glass. J Anal At Spectrom 26, 10401050.10.1039/c0ja00251hGoogle Scholar
Lauwers, D, Candeias, A, Coccato, A, Mirao, J, Moens, L & Vandenabeele, P (2016). Evaluation of portable Raman spectroscopy and handheld X-ray fluorescence analysis (hXRF) for the direct analysis of glyptics. Spectrochim Acta A Mol Biomol Spectrosc 157, 146152.10.1016/j.saa.2015.12.013Google Scholar
Liang, H, Sax, M, Saunders, D & Tite, M (2012). Optical Coherence Tomography for the non-invasive investigation of the microstructure of ancient Egyptian faience. J Archaeol Sci 39, 36833690.10.1016/j.jas.2012.06.007Google Scholar
Lucas, A (1936). Glazed ware in Egypt, India, and Mesopotamia. J Egypt Archaeol 22, 141164.10.1177/030751333602200122Google Scholar
Mantler, M & Schreiner, M (2001). X-ray analysis of objects of art and archaeology. J Radioanal Nucl Chem 247, 635644.10.1023/A:1010671619353Google Scholar
Mao, Y (2000). Lead-alkaline glazed Egyptian faience: Preliminary technical investigation of ptolemaic period faience vessels in the collection of the Walters Art gallery. J Am Inst Conserv 39, 185204.10.2307/3180090Google Scholar
Matin, M & Matin, M (2012). Egyptian faience glazing by the cementation method part 1: An investigation of the glazing powder composition and glazing mechanism. J Archaeol Sci 39, 763776.Google Scholar
McKerrel, H (1972). On the origin of British Faience beads and some aspects of the Wessex-Mycenae relationship. Proc Prehistoric Soc 38, 286301.10.1017/S0079497X00012159Google Scholar
Pollard, AM & Heron, C (2008). Archaeological Chemistry, 2nd ed. Cambridge, UK: The Royal Society of Chemistry.Google Scholar
Potts, PJ, Bernardini, F, Jones, MC, Williams-Thorpe, O & Webb, PC (2006). Effects of weathering on in situ portable X-ray fluorescence analyses of geological outcrops: Dolerite and rhyolite outcrops from the Preseli Mountains, South Wales. X-Ray Spectrom 35, 818.Google Scholar
Ragai, J (1986). Colour: Its significance and production in Ancient Egypt. Endeavour 10, 7479.10.1016/0160-9327(86)90134-1Google Scholar
Robinet, L & Eremin, K (2012). Glass. In Analytical Archaeometry: Selected Topics, Edwards, H. & Vandenabeele, P. (Eds.), pp. 268290. Cambridge, UK: RSC Publishing.10.1039/9781849732741-00268Google Scholar
Schiavon, N, Candeias, A, Ferreira, T, Da Conceiçao Lopes, M, Carneiro, A, Calligaro, T & Mirao, J (2012). A combined multi-analytical approach for the study of roman glass from south-west Iberia: Synchrotron μ-XRF, external-PIXE/PIGE and BSEM-EDS. Archaeometry 54, 974996.Google Scholar
Shortland, AJ (2002). The use and origin of antimonate colorants in early Egyptian glass. Archaeometry 44, 517530.Google Scholar
Shortland, AJ & Eremin, K (2006). The analysis of second millennium glass from Egypt and Mesopotamia, part 1: New WDS analyses. Archaeometry 48, 581603.10.1111/j.1475-4754.2006.00274.xGoogle Scholar
Shortland, AJ & Tite, MS (2000). Raw materials of glass from Amarna and implications for the origins of Egyptian glass. Archaeometry 42, 141151.Google Scholar
Soares, RM, Baptista, L, Pinheiro, R, Oliveira, L, Rodrigues, Z & Vale, N (2016). A necrópole da I Idade do Ferro do Monte Bolor 1-2 (S. Brissos, Beja). In Sidereum Ana III - El río Guadiana y Tartessos, Jiménez Ávila, J (Ed.), pp. 159186. Mérida: Consórcio de la Ciudad Monumental Histórico-Artística y Arqueológica de Mérida.Google Scholar
Tite, MS, Freestone, IC & Bimson, M (1983). Egyptian faience: An investigation of the methods of production. Archaeometry 25, 1727.Google Scholar
Tite, MS, Maniatis, Y, Kavoussanaki, D, Panagiotaki, M, Shortland, AJ & Kirk, SF (2009). Colour in Minoan faience. J Archaeol Sci 36, 370378.10.1016/j.jas.2008.09.031Google Scholar
Tite, MS, Manti, P & Shortland, AJ (2007). A technological study of ancient faience from Egypt. J Archaeol Sci 34, 15681583.10.1016/j.jas.2006.11.010Google Scholar
Tite, MS & Shortland, AJ (2003). Production technology for copper- and cobalt-blue vitreous materials from the New Kingdom site of Amarna—A reappraisal. Archaeometry 45, 285312.Google Scholar
Ward, WA (1994). Beetles in stone: The Egyptian scarab. Biblical Archaeol 57, 186202.10.2307/3210428Google Scholar