Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-54jdg Total loading time: 0.222 Render date: 2022-08-16T02:18:51.603Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

A Quantitative Nanodiffraction System for Ultrahigh Vacuum Scanning Transmission Electron Microscopy

Published online by Cambridge University Press:  16 September 2003

Gary G. Hembree
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504, USA
Christoph Koch
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504, USA
John C.H. Spence
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504, USA

Abstract

Of all the long-lived particles available as probes of condensed matter, and of all the signals available on a modern electron microscope, electron nanodiffraction patterns provide the strongest signal from the smallest volume. The technique is therefore perfectly suited to nanostructural investigations in inorganic chemistry and materials science. The Vacuum Generators HB501S, an ultrahigh vacuum (UHV) variant of the HB501 scanning transmission electron microscope (STEM), with side-entry double-tilt stage, specimen preparation and analysis chamber, three postspecimen lenses, and cold field-emission tip with integral magnetic gun lens, has therefore been modified to optimize nanodiffraction and quantitative convergent beam electron diffraction (QCBED) performance. A one-micrometer grain-size phosphor screen lying on a fiber-optic faceplate atop the instrument is fiber-optically coupled to a 2048 × 2048 charge-coupled device (CCD), 16-bit camera. This arrangement promises to provide much greater sensitivity, larger dynamic range, and a better modulation transfer function (MTF) than conventional single crystal scintillator (YAG) CCD systems, with noticeable absence of cross talk between pixels. The design of the nanodiffraction detector system is discussed, the gain of the detector is measured, the spherical aberration constant of the objective lens is measured by the Ronchigram method, and preliminary results from the modified instrument are shown.

Type
Research Article
Copyright
© 2003 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Quantitative Nanodiffraction System for Ultrahigh Vacuum Scanning Transmission Electron Microscopy
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A Quantitative Nanodiffraction System for Ultrahigh Vacuum Scanning Transmission Electron Microscopy
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A Quantitative Nanodiffraction System for Ultrahigh Vacuum Scanning Transmission Electron Microscopy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *