Skip to main content Accessibility help

Zeros of generalized Airy functions

  • P. Baldwin (a1)


Some interlacing properties of the zeros of the generalized Airy functions A1(z, p) are given for non-positive integral values of p. The result that A1 (z,p) has no real zero for is extended to show that all the zeros of A1(z,p) are real and simple if . It is also shown that all the zeros of the functions Bk(z,p, 1) for k = 1, 2, 3 are simple for non-positive integral p.



Hide All
1.Baldwin, P.. Mathematika, 28 (1981), 116140.
2.Baldwin, P.. Proc. Roy. Soc. Lond., A, 399 (1985), 321365.
3.Chester, C., Friedman, B. and Ursell, F.. Proc. Camb. Phil. Soc, 53 (1957), 599611.
4.Davey, A. and Reid, W. H.. J. Fluid Mech., 80 (1977), 509525.
5.Drazin, P. G. and Reid, W. H.. Hydrodynamic Stability (Cambridge, 1981).
6.Hughes, T. H. and Reid, W. H.. Phil. Trans. Roy. Soc. Lond., A263 (1968), 5791.
7.Olver, F. W. J.. Phil. Trans. Roy. Soc. Lond., A247 (1954), 328368.
8.Olver, F. W. J.. Asymptotics and Special Functions (Academic Press, 1974).
9.Reid, W. H.. Studies in Appl. Math., 51 (1972), 341368.
10.Wasow, W.. J. Res. Nat. Bur. Stand. 51 (1953), 195202.
MathJax is a JavaScript display engine for mathematics. For more information see


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed