Skip to main content Accessibility help
×
Home

ZERO-ONE LAWS IN SIMULTANEOUS AND MULTIPLICATIVE DIOPHANTINE APPROXIMATION

  • Liangpan Li (a1)

Abstract

Answering two questions of Beresnevich and Velani, we develop zero-one laws in both simultaneous and multiplicative Diophantine approximation. Our proofs mainly rely on a versatile Cassels–Gallagher type theorem and the cross fibering principle of Beresnevich, Haynes and Velani.

Copyright

References

Hide All
[1]Badziahin, D., Inhomogeneous Diophantine approximation on curves and Hausdorff dimension. Adv. Math. 223 (2010), 329351.
[2]Badziahin, D., Beresnevich, V. and Velani, S., Inhomogeneous theory of dual Diophantine approximation on manifolds. Adv. Math. 232 (2013), 135.
[3]Beresnevich, V., Bernik, V., Dodson, M. and Velani, S., Classical metric Diophantine approximation revisited. In Analytic Number Theory Essays in Honour of Klaus Roth, (eds Chen, W. W. L.et al), Cambridge University Press (Cambridge, 2009), 3861.
[4]Beresnevich, V., Haynes, A. and Velani, S., Multiplicative zero-one laws and metric number theory. Acta Arith. (accepted), arXiv:1012.0675.
[5]Beresnevich, V. V., Vaughan, R. C. and Velani, S. L., Inhomogeneous Diophantine approximation on planar curves. Math. Ann. 349 (2011), 929942.
[6]Beresnevich, V. and Velani, S., A note on zero-one laws in metrical Diophantine approximation. Acta Arith. 133 (2008), 363374.
[7]Beresnevich, V. and Velani, S., Classical metric Diophantine approximation revisited: the Khintchine–Groshev theorem. Int. Math. Res. Not. 2010 (2010), 6989.
[8]Beresnevich, V. and Velani, S., An inhomogeneous transference principle and Diophantine approximation. Proc. Lond. Math. Soc. 101 (2010), 821851.
[9]Cassels, J. W.  S., Some metrical theorems in Diophantine approximation. I. Proc. Cambridge Philos. Soc. 46 (1950), 209218.
[10]Duffin, R. J. and Schaeffer, A. C., Khintchine’s problem in metric Diophantine approximation. Duke Math. J. 8 (1941), 243255.
[11]Gallagher, P., Approximation by reduced fractions. J. Math. Soc. Japan 13 (1961), 342345.
[12]Gallagher, P., Metric simultaneous Diophantine approximation. J. London Math. Soc. 37 (1962), 387390.
[13]Gallagher, P. X., Metric simultaneous Diophantine approximation (II). Mathematika 12 (1965), 123127.
[14]Harman, G., Metric Number Theory, Clarendon Press (Oxford, 1998).
[15]Haynes, A. K., Pollington, A. D. and Velani, S. L., The Duffin–Schaeffer conjecture with extra divergence. Math. Ann. 353 (2012), 259273.
[16]Pollington, A. D. and Vaughan, R. C., The $k$-dimensional Duffin and Schaeffer conjecture. Mathematika 37 (1990), 190200.
[17]Roth, K. F., Rational approximations to algebraic numbers. Mathematika 2 (1955), 120.
[18]Schmidt, W. M., A metrical theorem in Diophantine approximation. Canad. J. Math. 12 (1960), 619631.
[19]Sprindz̆uk, V., Metric Theory of Diophantine Approximation, John Wiley & Sons (New York, 1979), (English translation).
[20]Vilchinski, V. T., On simultaneous approximations by irreducible fractions. Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 140 (1981), 4147 (in Russian).
[21]Vaaler, J. D., On the metric theory of Diophantine approximation. Pacific J. Math. 76 (1978), 527539.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

ZERO-ONE LAWS IN SIMULTANEOUS AND MULTIPLICATIVE DIOPHANTINE APPROXIMATION

  • Liangpan Li (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed