Skip to main content Accessibility help


  • Richard Oberlin (a1)


We show that if a collection of lines in a vector space over a finite field has “dimension” at least $2(d-1)+\unicode[STIX]{x1D6FD}$ , then its union has “dimension” at least $d+\unicode[STIX]{x1D6FD}$ . This is the sharp estimate of its type when no structural assumptions are placed on the collection of lines. We also consider some refinements and extensions of the main result, including estimates for unions of $k$ -planes.



Hide All
1. Bourgain, J., Katz, N. and Tao, T., A sum-product estimate in finite fields, and applications. Geom. Funct. Anal. 14(1) 2004, 2757; MR 2053599 (2005d:11028).
2. Bueti, J., An incidence bound for $k$ -planes in $F^{n}$ and a planar variant of the Kakeya maximal function. Preprint, 2006, arXiv:math/0609337 [math.CO].
3. Christ, M., Quasi extremals for a radon-like transform. Preprint, http://math.berkeley.edy/∼mchrist/Papers/quasiextremal.pdf .
4. Dvir, Z., On the size of Kakeya sets in finite fields. J. Amer. Math. Soc. 22(4) 2009, 10931097.
5. Ellenberg, J. S., Oberlin, R. and Tao, T., The Kakeya set and maximal conjectures for algebraic varieties over finite fields. Mathematika 56(1) 2010, 125; MR 2604979.
6. Mockenhaupt, G. and Tao, T., Restriction and Kakeya phenomena for finite fields. Duke Math. J. 121(1) 2004, 3574; MR 2031165 (2004m:11200).
7. Oberlin, D. M., Personal communication.
8. Oberlin, D. M., Unions of hyperplanes, unions of spheres, and some related estimates. Illinois J. Math. 51(4) 2007, 12651274; MR 2417426 (2009f:28005).
9. Wolff, T., An improved bound for Kakeya type maximal functions. Rev. Mat. Iberoam. 11(3) 1995, 651674; MR 1363209 (96m:42034).
10. Wolff, T., Recent work connected with the Kakeya problem. In Prospects in Mathematics (Princeton, NJ, 1996), American Mathematical Society (Providence, RI, 1999), 129–162; MR 1660476 (2000d:42010).
MathJax is a JavaScript display engine for mathematics. For more information see

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed