Skip to main content Accessibility help
×
×
Home

A UNIFIED APPROACH TO CONTINUOUS, MEASURABLE SELECTIONS, AND SELECTIONS FOR HYPERSPACES

  • Fotis H. Mavridis (a1)
Abstract

In this paper we provide a unified approach, based on methods of descriptive set theory, for proving some classical selection theorems. Among them is the zero-dimensional Michael selection theorem, the Kuratowski–Ryll-Nardzewski selection theorem, as well as a known selection theorem for hyperspaces.

Copyright
Footnotes
Hide All

This paper contains a part of the author’s doctoral thesis written under the supervision of Professor Alexander D. Arvanitakis at the National Technical University of Athens. The author would like to thank Professor Alexander Arvanitakis, Professor Apostolos Giannopoulos, Dr Elena Papanikolaou, and the referee for their valuable feedback.

Footnotes
References
Hide All
1. Aliprantis, Ch. D. and Border, K., Infinite Dimensional Analysis, Springer (Berlin, Heidelberg, 2006).
2. Argyros, S. A. and Arvanitakis, A., A characterization of regular averaging operators and its consequences. Studia Math. 151 2002, 207226.
3. Arvanitakis, A., A simultaneous selection theorem. Fund. Math. 219 2012, 114.
4. Choban, M. M., Many-valued mappings and Borel sets I. Trans. Moscow Math. Soc. 22 1970, 258280.
5. Denkowski, Z., Migórski, S. and Papageorgiou, N. S., An Introduction to Nonlinear Analysis: Theory, Springer (New York, 2003).
6. Ditor, S., Averaging operators in C(S) and lower semicontinuous sections of continuous maps. Trans. Amer. Math. Soc. 175 1973, 195208.
7. Ditor, S. and Haydon, R., On absolute retracts, P(S), and complemented subspaces of C(D 𝜔1 ). Studia Math. 56 1976, 243251.
8. Engelking, R., General Topology, PWN (Warszawa, 1977).
9. Engelking, R., Heath, R. W. and Michael, E., Topological well-ordering and continuous selections. Invent. Math. 6 1968, 150158.
10. Gutev, V., Completeness, sections and selections. Set-Valued Anal. 15 2007, 275295.
11. Gutev, V., Selections and hyperspaces. In Recent Progress in General Topology III (eds Hart, K. P., van Mill, J. and Simon, P.), Atlantis Press (2014), 535579.
12. Gutev, V. and Nogura, T., Selection problems for hyperspaces. In Open Problems in Topology II (ed. Pearl, E.), Elsevier (Amsterdam, 2007), 161170.
13. Haydon, R., On a problem of Pelczyński: Milutin spaces, Dugundji spaces and AE(0-dim). Studia Math. 52 1974, 2331.
14. Haydon, R., Embedding D 𝜏 in Dugundji spaces, with an application to linear topological classification of spaces of continuous functions. Studia Math. 56 1976, 229242.
15. Hu, S. and Papageorgiou, N. S., Handbook of Multivalued Analysis, Volume I: Theory, Kluwer (Dordrecht, 1997).
16. Kechris, A., Classical Descriptive Set Theory, Springer (New York, 1995).
17. Kuratowski, K. and Ryll-Nardzewski, C., A general theorem on selectors. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 1965, 397403.
18. Mägerl, G., A unified approach to measurable and continuous selections. Trans. Amer. Math. Soc. 245 1978, 443452.
19. Maitra, A. and Rao, B. V., Selection theorems and the reduction principle. Trans. Amer. Math. Soc. 202 1975, 5766.
20. Michael, E., Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71 1951, 152182.
21. Michael, E., Continuous selections I. Ann. of Math. (2) 63 1956, 361382.
22. Michael, E., Selected selection theorems. Amer. Math. Monthly 63 1956, 233238.
23. Michael, E., A theorem on semi-continuous set-valued functions. Duke Math. J. 26 1959, 647651.
24. Michael, E. and Pixley, C., A unified theorem on continuous selections. Pacific J. Math. 87 1980, 187188.
25. Repovs̆, D. and Semenov, P. V., Continuous Selections of Multivalued Mappings, Kluwer (Dordrecht, 1998).
26. Repovs̆, D. and Semenov, P. V., Continuous selections of multivalued mappings. In Recent Progress in General Topology II (eds Hušek, M. and van Mill, J.), North Holland (Amsterdam, 2002), 423461.
27. Valov, V., On a theorem of Arvanitakis. Mathematika 59 2013, 250256.
28. Willard, S., General Topology, Dover (New York, 2004) (republication).
29. Yamauchi, T., On a simultaneous selection theorem. Studia Math. 215 2013, 19.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematika
  • ISSN: 0025-5793
  • EISSN: 2041-7942
  • URL: /core/journals/mathematika
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed