Skip to main content Accessibility help


  • François Fillastre (a1) and Ivan Izmestiev (a2) (a3)


We generalize to higher dimensions the Bavard–Ghys construction of the hyperbolic metric on the space of polygons with fixed directions of edges. The space of convex $d$ -dimensional polyhedra with fixed directions of facet normals has a decomposition into type cones that correspond to different combinatorial types of polyhedra. This decomposition is a subfan of the secondary fan of a vector configuration and can be analyzed with the help of Gale diagrams. We construct a family of quadratic forms on each of the type cones using the theory of mixed volumes. The Alexandrov–Fenchel inequalities ensure that these forms have exactly one positive eigenvalue. This introduces a piecewise hyperbolic structure on the space of similarity classes of polyhedra with fixed directions of facet normals. We show that some of the dihedral angles on the boundary of the resulting cone-manifold are equal to $\unicode[STIX]{x1D70B}/2$ .



Hide All
1. Alexandrov, A. D., On the theory of mixed volumes II. Mat. Sb. 44 1937, 12051238 (Engl. transl. in [ 3 ]).
2. Alexandrov, A. D., Existence of a convex polyhedron and of a convex surface with a given metric. Mat. Sb., N. Ser. 11(53) 1942, 1565 (Russian, English summary).
3. Alexandrov, A. D., Selected Works. Part I (Classics of Soviet Mathematics 4 ), Gordon and Breach Publishers (Amsterdam, 1996) ; selected scientific papers. Translated from the Russian by P. S. V. Naidu. Edited and with a preface by Yu. G. Reshetnyak and S. S. Kutateladze.
4. Bavard, C. and Ghys, É., Polygones du plan et polyèdres hyperboliques. Geom. Dedicata 43(2) 1992, 207224.
5. Billera, L. J., Filliman, P. and Sturmfels, B., Constructions and complexity of secondary polytopes. Adv. Math. 83(2) 1990, 155179.
6. Billera, L. J., Gel’fand, I. M. and Sturmfels, B., Duality and minors of secondary polyhedra. J. Combin. Theory Ser. B 57(2) 1993, 258268.
7. Bobenko, A. I. and Izmestiev, I., Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes. Ann. Inst. Fourier (Grenoble) 58(2) 2008, 447505.
8. Bobenko, A. I. and Springborn, B. A., A discrete Laplace–Beltrami operator for simplicial surfaces. Discrete Comput. Geom. 38(4) 2007, 740756.
9. De Loera, J. A., Rambau, J. and Santos, F., Triangulations: Structures for algorithms and applications. In Algorithms and Computation in Mathematics, Vol. 25, Springer (Berlin, 2010).
10. Ewald, G., Combinatorial Convexity and Algebraic Geometry (Graduate Texts in Mathematics 168 ), Springer (New York, 1996).
11. Fillastre, F., From spaces of polygons to spaces of polyhedra following Bavard, Ghys and Thurston. Enseign. Math. (2) 57(1–2) 2011, 2356.
12. Fillastre, F., Fuchsian convex bodies: basics of Brunn–Minkowski theory. Geom. Funct. Anal. 23(1) 2013, 295333.
13. Fillastre, F., Polygons of the Lorentzian plane and spherical simplexes. Elem. Math. 69 2014, 144155.
14. Fillastre, F. and Izmestiev, I., Hyperbolic cusps with convex polyhedral boundary. Geom. Topol. 13(1) 2009, 457492.
15. Fillastre, F. and Izmestiev, I., Gauss images of hyperbolic cusps with convex polyhedral boundary. Trans. Amer. Math. Soc. 363(10) 2011, 54815536.
16. Gelf́and, I. M., Kapranov, M. M. and Zelevinsky, A. V., Discriminants, resultants, and multidimensional determinants. In Mathematics: Theory and Applications, Birkhäuser Boston Inc. (Boston, MA, 1994).
17. Grünbaum, B., Convex Polytopes,, 2nd edn (Graduate Texts in Mathematics 221 ), Springer (New York, 2003) ; prepared and with a preface by V. Kaibel, V. Klee and G. M. Ziegler.
18. Im Hof, H.-C., Napier cycles and hyperbolic Coxeter groups. Bull. Soc. Math. Belg. Sér. A 42(3) 1990, 523545 ; Algebra, groups and geometry.
19. Indermitte, C., Liebling, T. M., Troyanov, M. and Clémençon, H., Voronoi diagrams on piecewise flat surfaces and an application to biological growth. Theoret. Comput. Sci. 263(1–2) 2001, 263274 ; Combinatorics and computer science (Palaiseau, 1997).
20. Izmestiev, I., The Colin de Verdière number and graphs of polytopes. Israel J. Math. 178 2010, 427444.
21. Izmestiev, I., Infinitesimal rigidity of convex polyhedra through the second derivative of the Hilbert–Einstein functional. Canad. J. Math. 66(4) 2014, 783825.
22. Kapovich, M. and Millson, J., On the moduli space of polygons in the Euclidean plane. J. Differential Geom. 42(2) 1995, 430464.
23. Kapovich, M. and Millson., J. J., The symplectic geometry of polygons in Euclidean space. J. Differential Geom. 44(3) 1996, 479513.
24. Khovanskii, A. G. and Timorin, V., On the theory of coconvex bodies. Discrete Comput. Geom. 52(4) 2014, 806823.
25. Kubota, T., Über die Eibereiche im n-dimensionalen Raume. Sci. Rep. Tôhoku Univ. 14(1) 1925, 399402.
26. Masur, H. and Smillie, J., Hausdorff dimension of sets of nonergodic measured foliations. Ann. of Math. (2) 134(3) 1991, 455543.
27. McMullen, P., Representations of polytopes and polyhedral sets. Geom. Dedicata 2 1973, 8399.
28. McMullen, P., Transforms, diagrams and representations. In Contributions to Geometry (Proc. Geom. Sympos., Siegen, 1978), Birkhäuser (Basel, 1979), 92130.
29. McMullen, P., The polytope algebra. Adv. Math. 78(1) 1989, 76130.
30. McMullen, P., Weights on polytopes. Discrete Comput. Geom. 15(4) 1996, 363388.
31. McMullen, P. and Schneider, R., Valuations on convex bodies. In Convexity and its Applications, Birkhäuser (Basel, 1983), 170247.
32. McMullen, P., Schneider, R. and Shephard, G. C., Monotypic polytopes and their intersection properties. Geom. Dedicata 3 1974, 99129.
33. Minkowski, H., Volumen und Oberfläche. Math. Ann. 57 1903, 447495.
34. Nishi, H. and Ohshika, K., A pseudo-metric on moduli space of hyperelliptic curves. Josai Math. Monogr. 5 2012, 5159.
35. Postnikov, A., Reiner, V. and Williams, L., Faces of generalized permutohedra. Doc. Math. 13 2008, 207273.
36. Pukhlikov, A. V. and Khovanskiĭ, A. G., Finitely additive measures of virtual polyhedra. Algebra i Analiz 4(2) 1992, 161185.
37. Schneider, R., Das Christoffel-problem für polytope. Geom. Dedicata 6(1) 1977, 8185.
38. Schneider, R., Convex Bodies: the Brunn–Minkowski Theory (Encyclopedia of Mathematics and its Applications 44 ), Cambridge University Press (Cambridge, 1993).
39. Shephard, G. C., Decomposable convex polyhedra. Mathematika 10 1963, 8995.
40. Stanley, R., The number of faces of a simplicial convex polytope. Adv. Math. 35 1980, 236238.
41. Thurston, W. P., Three-Dimensional Geometry and Topology, Vol 1 (Princeton Mathematical Series  35 ) (ed. Levy, Silvio), Princeton University Press (Princeton, NJ, 1997).
42. Thurston, W. P., Shapes of polyhedra and triangulations of the sphere. In The Epstein Birthday Schrift (Geometry & Topology Monographs 1 ), Geometry Topology Publ. (Coventry, 1998), 511549.
43. Troyanov, M., On the moduli space of singular Euclidean surfaces. In Handbook of Teichmüller Theory, Vol. I (IRMA Lectures Mathematics and Theoretical Physics 11 ), European Mathematical Society (Zürich, 2007), 507540.
44. Veech, W. A., Flat surfaces. Amer. J. Math. 115(3) 1993, 589689.
45. Wagner, U., k-sets and k-facets. In Surveys on Discrete and Computational Geometry (Contemporary Mathematics 453 ), American Mathematical Society (Providence, RI, 2008), 443513.
46. Ziegler, G. M., Lectures on Polytopes (Graduate Texts in Mathematics 152 ), Springer (New York, 1995).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0025-5793
  • EISSN: 2041-7942
  • URL: /core/journals/mathematika
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed