Skip to main content Accessibility help

Low-dimensional concordances, Whitney towers and isotopies

  • Slawomir Kwasik (a1)


Let Mn be a smooth closed n-dimensional manifold and let DIFF (Mn) be the group of diffeomorphisms of Mn. Two diffeomorphisms f0, f1 ∈ DIFF(Mn) are said to be concordant (pseudo-isotopic) if there is a diffeomorphism F ∈ DIFF (Mn × I), where I = [0, 1], such that F(x, 0) = f0(x) and F(x, 1) = f1(x) for all xMn.



Hide All
[1] Burghelea, D. and Lashof, R.. The homotopy type of the space of diffeomorphisms, I, II. Trans. Amer. Math. Soc. 196 (1974), 150.
[2] Burghelea, D. and Lashof, R.. Geometric transfer and the homotopy type of the automorphism groups of a manifold. Trans. Amer. Math. Soc. 269 (1982), 138.
[3] Cerf, J.. La stratification naturelle des espaces de fonctions differentiates réelles et le théorème de la pseudo-isotopie. Inst. Hautes Etudes Sci. Publ. Math. no. 39 (1970), 5173.
[4] Freedman, M. H.. The topology of four-dimensional manifolds. J. Differential Geom. 17 (1982), 357453.
[5] Freedman, M. H.. The disk theorem for 4-dimensional manifolds. Proc. Int. Cong. Math. (1983), 647663.
[6] Freedman, M. H. and Quinn, F.. Topology of 4-manifolds, to appear in Ann. of Math. Stud. (In the Press.)
[7] Hatcher, A.. Concordance spaces, higher simple homotopy theory and applications. Proc. Symp. Pure Math. vol. 32 (1978), 321.
[8] Hatcher, A. and Wagoner, J.. Pseudo-isotopies of compact manifolds. Astérisque 6 (1973).
[9] Hsiang, W. C. and Sharpe, R. W.. Parametrized surgery and isotopy. Pacific J. Math. 67 (1976), 401459.
[10] Hsiang, W. C. and Jahren, B.. A note on the homotopy groups of the diffeomorphism groups of spherical space forms, in Algebraic K-theory, Lecture Notes in Math. vol. 966 (Springer-Verlag, 1982), 132145.
[11] Kirby, R.. Problems in low-dimensional manifold theory. Proc. Symp. Pure Math. vol. 32 (1978), 273312.
[12] Lawson, T.. Homeomorphisms of Bk × Tn. Proc. Amer. Math. Soc. 56 (1976), 349350.
[13] Milnor, J.. Lectures on the h-Cobordism Theorem. Math. Notes (Princeton University Press, 1965).
[14] Milnor, J.. Whitehead torsion. Bull. Amer. Math. Soc. 72 (1966), 358426.
[15] Milnor, J.. Introduction to algebraic K-theory. Ann. of Math. Studies, no. 72 (1971).
[16] Perron, B.. Pseudo-isotopies et isotopies en dimension 4 dans la catégorie topologique. C. R. Acad. Sci. Paris Série I Math. 299 (1984), 455458, Topology 25 (1986), 381–397.
[17] Quinn, F.. Ends of Maps III: Dimensions 4 and 5. J. Differential Geom. 17 (1982), 503521.
[18] Quinn, F.. Isotopy of four-manifolds. J. Differential Geom. 24 (1986), 343372.
[19] Rourke, C. P. and Sanderson, B. J.. Introduction to Piecewise-Linear Topology (Springer-Verlag, 1972).
[20] Siebenmann, L., personal communication.
[21] Wagoner, J. B.. On K2 of the Laurent polynomial ring. Amer. J. Math. 93 (1971), 123138.
[22] Waldhausen, F.. On irreducible 3-manifolds which are sufficiently large. Ann. of Math. 87 (1968), 5688.
[23] Wall, C. T. C.. Diffeomorphisms of 4-manifolds. J. London Math. Soc. 39 (1964), 131140.
[24] Wall, C. T. C.. Surgery on Compact Manifolds (Academic Press, 1970).

Related content

Powered by UNSILO

Low-dimensional concordances, Whitney towers and isotopies

  • Slawomir Kwasik (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.