Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T18:34:25.028Z Has data issue: false hasContentIssue false

Computing with Nilpotent Orbits in Simple Lie Algebras of Exceptional Type

Published online by Cambridge University Press:  01 February 2010

Willem A. de Graaf
Affiliation:
Dipartimento di Matematica, Università di Trento, via Sommarive 14, I-38100 Povo (Trento), Italy, degraaf@science.unitn.it

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a simple algebraic group over an algebraically closed field with Lie algebra g. Then the orbits of nilpotent elements of g under the adjoint action of G have been classified. We describe a simple algorithm for finding a representative of a nilpotent orbit. We use this to compute lists of representatives of these orbits for the Lie algebras of exceptional type. Then we give two applications. The first one concerns settling a conjecture by Elashvili on the index of centralizers of nilpotent orbits, for the case where the Lie algebra is of exceptional type. The second deals with minimal dimensions of centralizers in centralizers.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2008

References

1.Bourbaki, N., Groupes et Algèbres de Lie (Hermann, Paris, 1968) chapters 4, 5 and 6.Google Scholar
2.Carter, R. W., Finite Groups of Lie Type. Conjugacy classes and complex characters (Wiley & Sons, Chichester, 1985).Google Scholar
3.Collingwood, David H. and McGovern, William M., Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series (Van Nostrand Reinhold, New York, 1993).Google Scholar
4.Dixmier, J., Algèbres Enveloppantes (Gauthier-Villars, Paris, Bruxelles, Montréal, 1974).Google Scholar
5.Panyushev, D., Premet, A. and Yakimova, O., ‘On symmetric invariants of centralisers in reductive Lie algebras’, J. Algebra 313 (2007) 343391.CrossRefGoogle Scholar
6.Panyushev, Dmitri I., ‘The index of a Lie algebra, the centralizer of a nilpotent element, and the normalizer of the centralizer’, Math. Proc. Cambridge Philos. Soc. 134 (2003) 4159.CrossRefGoogle Scholar
7.Popov, V. L., ‘The cone of Hilbert null forms’, Tr. Mat. Inst. Steklova 241 (2003) 192209 (Russian); English transl. Proc. Steklov Inst. Math. 241 (2003) no. 2, 177194.Google Scholar
8.Richardson, R. W., ‘Commuting varieties of semisimple Lie algebras and algebraic groups’, Compositio Math. 38 (1979) 311327.Google Scholar
9.Sekiguchi, Jirō, ‘A counterexample to a problem on commuting matrices’, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983) 425426.CrossRefGoogle Scholar
10.Vinberg, E. B. and Yakimova, O. S., ‘Complete families of commuting functions for coisotropic Hamiltonian actions’, Preprint, 2005, arXiv:math/ 0511498v2 [math.SG].Google Scholar
11.Yakimova, O. S., ‘The index of centralizers of elements in classical Lie algebras’, Funktsional. Anal, i Prilozhen. 40 (2006) 5264, 96.CrossRefGoogle Scholar
Supplementary material: File

JCM 11 Graaf Appendix A

Graaf Appendix A

Download JCM 11 Graaf Appendix A(File)
File 63.3 KB