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COMPUTING WITH NILPOTENT ORBITS IN SIMPLE LIE
ALGEBRAS OF EXCEPTIONAL TYPE

WILLEM A. DE GRAAF

Abstract

Let G be a simple algebraic group over an algebraically
closed field with Lie algebra g. Then the orbits of nilpotent
elements of g under the adjoint action of G have been classified.
We describe a simple algorithm for finding a representative of
a nilpotent orbit. We use this to compute lists of representa-
tives of these orbits for the Lie algebras of exceptional type.
Then we give two applications. The first one concerns settling
a conjecture by Elashvili on the index of centralizers of nilpo-
tent orbits, for the case where the Lie algebra is of exceptional
type. The second deals with minimal dimensions of centralizers
in centralizers.

1. Introduction

Let G be a simple algebraic group over an algebraically closed field of characteristic
0. Let g denote its Lie algebra. Then G acts on g via the adjoint representation. It
is a natural question what the G-orbits in g are. Recall that an element e ∈ g is said
to be nilpotent if the map ade : g → g is nilpotent. Now the G-orbits of nilpotent
elements in g are called nilpotent orbits. These have drawn a lot of attention in
the past decades. On some occasions it turns out that using conceptual arguments
to prove their properties is a lot harder for the exceptional types than it is for
the classical types. However, for the former an approach based on a case by case
analysis is possible. It is the objective of this paper to describe how this can be
carried out using computer calculations.

The nilpotent orbits in g are classified in terms of so-called weighted Dynkin
diagrams. The first problem that we consider is to find a nilpotent element in g
given the corresponding weighted Dynkin diagram. We describe a straightforward
algorithm for this (Section 3). The algorithm is used to compute lists of explicit
representatives of the nilpotent orbits in the Lie algebras of exceptional type. They
are listed in Appendix A.

We use these lists to prove Elashvili’s conjecture for the exceptional types by com-
puter calculations. This conjecture concerns the index of centralizers of nilpotent
elements. The concept of index is defined as follows. Let K be a finite-dimensional
Lie algebra, and let K∗ denote the dual space. For f ∈ K∗ set Kf = {x ∈ K |
f([x, y]) = 0 for all y ∈ K}. Then the index of K is defined as the number

ind(K) = inf
f∈K∗

dimKf .
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Computing with nilpotent orbits in simple Lie algebras of exceptional type

For semisimple Lie algebras in characteristic zero it is known that the index is equal
to the rank ([4], Proposition 1.11.12).

By Cg(x) we denote the centralizer of of x ∈ g.

Conjecture 1 (Elashvili). Let g be a semisimple Lie algebra over an algebraically
closed field of characteristic 0. Let x ∈ g. Then ind(Cg(x)) is equal to the rank of g.

This conjecture has recently received renewed attention, cf. [5], [6], [10]. Its proof
immediately reduces to the case where g is simple, and x nilpotent (cf. [6], §3). Also
an inequality of Vinberg states that ind(Cg(x)) is at least the rank of g (see [6],
1.6, 1.7). The conjecture has been proved for g of classical type in [11] (see also the
discussion in [5]). In Section 4 we report on computer calculations that settle the
conjecture for the exceptional types.

In [9] the question is considered whether for a given nilpotent e ∈ g there exists
x ∈ Cg(e) such that the dimension of Cg(e, x) equals the rank of g. There an
example is given where such an x does not exist, for the case where g is of type F4.
In Section 5 we approach this question using our lists of representatives of nilpotent
orbits. This way we are able to give a complete list of all e for which such an x
does not exist, in all exceptional types. For the Lie algebra of type E8 this solves
an open problem from [9]. For type G2 this corrects a statement in [9].

The paper ends with two appendices. The first contains the lists of represen-
tatives of nilpotent orbits. The second (Appendix B) has lists of positive roots as
they appear in the computer algebra system GAP. They have been added to help
reading the tables of Appendix A.

All algorithms described in this paper have been implemented in the language
of the computer algebra system GAP4. The implementations are available from

http://www.lms.ac.uk/jcm/11/lms2007-059/appendix-a

Acknowledgments. I thank Alexander Elashvili for suggesting all the topics of
this paper to me, and for his enthusiastic advice while I was writing it. Also I
would like to thank Karin Baur for several helpful email exchanges, and for her
comments on earlier versions.

2. Preliminaries on nilpotent orbits

In this section we give a short overview of the theory behind the classification of
nilpotent orbits. For more detailed accounts we refer to [2], [3].

Let e ∈ g be a nilpotent element. Then by the Jacobson–Morozov theorem e lies
in a subalgebra of g that is isomorphic to sl2. In other words, there are elements
f, h ∈ g with [e, f ] = h, [h, f ] = −2f , [h, e] = 2e. In this case we say that (f, h, e)
is an sl2-triple.

Now let (f, h, e) be an sl2-triple. Then by the representation theory of sl2 we get
a direct sum decomposition g =

⊕
k∈Z

g(k), where g(k) = {x ∈ g | [h, x] = kx}. Fix
a Cartan subalgebra H of g with h ∈ H . Let Φ be the corresponding root system
of g. For α ∈ Φ we let xα be a corresponding root vector. For each α there is a
k ∈ Z with xα ∈ g(k). We write η(α) = k. It can be shown that there exists a basis
of simple roots Δ ⊂ Φ such that η(α) � 0 for all α ∈ Δ. Furthermore, for such a Δ
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Computing with nilpotent orbits in simple Lie algebras of exceptional type

we have η(α) ∈ {0, 1, 2} for all α ∈ Δ. Write Δ = {α1, . . . , αl}. Then the Dynkin
diagram of Φ has l nodes, the ith node corresponding to αi. Now to each node we
add the label η(αi); the result is called the weighted Dynkin diagram. It is denoted
Δ(e), and it depends only on e, and not on the choice of sl2-triple containing e.

Let e, e′ be two nilpotent elements in g. It can be shown that e, e′ lie in the same
G-orbit if and only if Δ(e) = Δ(e′). So the weighted Dynkin diagram of e uniquely
identifies the nilpotent orbit Ge. The weighted Dynkin diagrams corresponding to
nilpotent orbits have been classified. For the exceptional types there are explicit
lists. For the classical types there is a classification in terms of partitions. In par-
ticular, the nilpotent orbits in g have been classified.

Let e ∈ g be a representative of a nilpotent orbit. We may assume that e is a
linear combination of root vectors, corresponding to positive roots. Let β1, . . . , βr be
the positive roots involved in this linear combination. Let xβi (respectively yβi) be
the root vector corresponding to βi (respectively −βi). Let l ⊂ g be the subalgebra
generated by H along with the xβi and yβi . Then l is reductive, and e ∈ l. Let
(f, h, e) be an sl2-triple containing e, contained in l. Then l decomposes with respect
to the action of adh as l =

⊕
k∈Z

l(k). Let p =
⊕

k�0 l(k), which is a subalgebra of l.
Now it can be shown that the nilpotent orbit containing e is uniquely determined
by the pair (l, p) (cf. [3], Chapter 8). Corresponding to this the nilpotent orbit has
the label Xn(ai), where Xn is the type of the semisimple part of l, and i is the
number of simple roots in the semisimple part of p. If the latter algebra is solvable,
then we omit the ai. Furthermore, if the roots of l are short (seen as roots of g),
then a tilde is put over the Xn. On some occasions, two different orbits can have
the same label. Then a ′ is added to one of them, whereas the other gets ′′. We note
that, although the pair (l, p) uniquely determines the nilpotent orbit, it is also true
that the same nilpotent orbit can have more than one (non-isomorphic) such pair.
So the same nilpotent orbit can have more than one label.

The nilpotent element e from above also has a Dynkin diagram, which is simply
the Dynkin diagram of the roots βi. This diagram has r nodes, and node i is
connected to node j by 〈βi, β

∨
j 〉〈βj , β

∨
i 〉 = 0, 1, 2, 3 lines. Furthermore, if these

scalar products are positive, then the lines are dotted. This only occurs when p is
not solvable.

3. Finding representatives of nilpotent orbits

In this section we consider the problem of finding a nilpotent element in g cor-
responding to a given weighted Dynkin diagram D. We write Di for the label at
node i. Let H be a fixed Cartan subalgebra of g.

Let e ∈ g be a nilpotent element such that Δ(e) = D. Then there is an sl2-triple
(f, h, e), containing e. Since we can conjugate any Cartan subalgebra of g to H by
an element of G, we may assume that h ∈ H . As in the previous section we write
Δ = {α1, . . . , αl} for a basis of simple roots. By choosing a Chevalley basis in g we
get basis elements h1, . . . , hl of H , and root vectors xαi with [hj , xαi ] = 〈αi, α

∨
j 〉xαi .

Each h ∈ H yields a decomposition g =
⊕

k∈Z
g(k), and a weighted Dynkin

diagram, as described in the previous section. This weighted Dynkin diagram is
equal to D if and only if [h, xαi ] = Dixαi for 1 � i � l. But this happens if and
only if

∑l
j=1〈αi, α

∨
j 〉aj = Di, where the aj are such that h =

∑
j ajhj . Let C =

(〈αi, α
∨
j 〉)1�i,j�l be the Cartan matrix of Φ. It follows that h yields the weighted
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Dynkin diagram D if and only if C(a1, . . . , al)t = (D1, . . . , Dl). Hence there is a
unique such h, and we can compute it by solving a system of linear equations.
However, not every weighted Dynkin diagram corresponds to a nilpotent orbit. In
other words, not every weighted Dynkin diagram yields a h that lies in an sl2-triple.
The next two lemmas lead to a probabilistic algorithm to decide whether this is the
case or not.

Lemma 1. Let h ∈ H. Then h belongs to an sl2-triple if and only if there is an
x ∈ g(2) such that h ∈ [x, g(−2)].

Proof. The condition is clearly necessary. If h ∈ [x, g(−2)] then there is a y ∈ g(−2)
with [x, y] = h. Then (y, h, x) is an sl2-triple.

Lemma 2. Let h ∈ H be contained in an sl2-triple (y, h, x). Let E be the set of
x′ ∈ g(2) such that h ∈ [x′, g(−2)]. Then E is Zariski dense in g(2).

Proof. (cf. [2], Proposition 5.6.2). Let Gh = {g ∈ G | Ad(g)(h) = h} be the sta-
bilizer of h in G. Then Gh is an algebraic subgroup of G. Now Lie(Gh) = {u ∈
g | ad(u)(h) = 0}. This is the centralizer of h in g. Hence Lie(Gh) = g(0). For
u ∈ g(2) and g ∈ Gh we have [h,Ad(g)(u)] = Ad(g)[Ad(g−1)(h), u] = Ad(g)[h, u] =
2Ad(g)(u). Hence Ad(g) stabilizes g(2). Let ϕ : Gh → g(2) be the morphism de-
fined by ϕ(g) = Ad(g)(x). Then the image of ϕ is the Gh-orbit of x in g(2). The
differential of ϕ is dϕ : g(0) → g(2), dϕ(u) = [u, x]. But this is surjective because
[g(0), x] = g(2) (this follows from the representation theory of sl2). So ϕ is a domi-
nant morphism. Hence ϕ(Gh) is a dense subset of g(2). Furthermore ϕ(Gh) ⊂ E.

Based on this we have a probabilistic algorithm for finding a representative of a
nilpotent orbit, given a weighted Dynkin diagram. First we determine the unique
h ∈ H corresponding to the diagram. Then we select a random x ∈ g(2), in the
following way. Let x1, . . . , xs be a basis of g(2). Let Ω be a finite subset of Q

and select μ1, . . . , μs randomly, uniformly and independently from Ω. Then set
x =

∑
i μixi. By the previous lemma the probability that h ∈ [x, g(−2)] is high

(and can be made arbitrarily close to 1 by enlarging Ω). If it happens to be the
case that h �∈ [x, g(−2)] then we select another x and continue. This algorithm will
terminate in very few steps.

The x found by the algorithm above will have “ugly” coefficients with respect to
a Chevalley basis. We can obtain an element with “nice” coefficients in the following
way. We write x with respect to a Chevalley basis of g. We fix every coefficient but
the first. For the first coefficient we try the values 0, 1, 2, . . .. The lemma ensures
that we will quickly find an x′ which is a representative of the same nilpotent orbit,
with the first coefficient a nice integer. We continue this way until all coefficients
are nice integers.

The above results also provide a probabilistic algorithm for testing whether a
given weighted Dynkin diagram corresponds to a nilpotent orbit. We basically try
the same algorithm a few times, and if it does not come up with an x then the
weighted Dynkin diagram does not correspond to a nilpotent orbit with high prob-
ability. In principle we can make this absolutely sure by using Gröbner bases. This
works as follows. Let x1, . . . , xs and y1, . . . , ys be bases of respectively g(2) and
g(−2). Let a1, . . . , as, b1, . . . , bs be indeterminates. Let u1, . . . , ur be a basis of g(0),

283https://doi.org/10.1112/S1461157000000607 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000607


Computing with nilpotent orbits in simple Lie algebras of exceptional type

and write [xi, yj ] =
∑

k γ
k
ijuk, and h =

∑
k αkuk. Then there is an x ∈ g(2) with

h ∈ [x, g(−2)] if and only if the system of polynomial equations

s∑
i=1

s∑
j=1

γk
ijaibj − αk = 0 for 1 � k � r

has a solution. Now this system has a solution over C if and only if the reduced
Gröbner basis of the ideal generated by the left hand sides of these equations is
not {1}.
Remark. In [7] Popov has given an algorithm for determining the strata of the
nullcone of a linear representation of a reductive algebraic group. This also yields an
algorithm for classifying nilpotent orbits in reductive Lie algebras, and for finding
representatives of them.

4. Calculating the index

In this section we describe a simple algorithm that for a Lie algebra gives an
upper bound for its index. If the Lie algebra is defined over a sufficiently large field
(e.g., of characteristic 0), then the probability that this upper bound is equal to the
index can be made arbitrarily high. We use the same notation as in Section 1.

Let K be a finite-dimensional Lie algebra with basis {x1, . . . , xn}. Let ckij be the
structure constants of K, i.e., [xi, xj ] =

∑n
k=1 c

k
ijxk. Let {ψ1, . . . , ψn} be the dual

basis of K∗, i.e., ψi(xj) = δij . Let f =
∑

i Tiψi be an element of the dual space
K∗. Let x =

∑
i αixi ∈ K. Then x ∈ Kf if and only if f([x, xj ]) = 0 for 1 � j � n.

Now this is equivalent to

n∑
i=1

(
n∑

k=1

ckijTk)αi = 0 for j = 1, . . . , n.

Define the n× n-matrix A by A(i, j) =
∑n

k=1 c
k
ijTk. Then dimKf = n− rank(A).

So the dimension of Kf is minimal if and only if the rank of A is maximal. Now
the rank of A is not maximal if and only if certain polynomial expressions in the Tk

(i.e., determinants of certain minors of A) vanish. Therefore, if the Tk are chosen
randomly and uniformly from a sufficiently large set, then with high probability
the rank of A will be maximal.

Here we consider the case where K = Cg(e), where e is a nilpotent element of
the simple Lie algebra g. Then by Vinberg’s inequality we have that ind(K) is at
least the rank of g. So if we find an f such that dim(Kf ) = rank(g), then we have
proved that ind(K) = rank(g). Moreover, the above discussion shows that we will
quickly find such an f (if it exists) by randomly choosing the Tk.

With the help of an implementation of this algorithm in GAP4, we have checked
Elashvili’s conjecture for the exceptional types (which, except G2, are the remaining
open cases). As a result we can conclude that Elashvili’s conjecture holds for all
simple Lie algebras.
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5. Centralizers in centralizers

Let e ∈ g be a nilpotent element. Let Ce = Cg(e) be the centralizer of e in g.
Let x ∈ Ce and consider the centralizer Ce,x of x in Ce (i.e., Ce,x is the set of all
elements of g commuting with both e and x). From [8] it follows that Ce,x contains
a commutative subalgebra of dimension equal to rank(g). Hence the dimension of
Ce,x is at least the rank of g. In [9] the following question is considered: given e
does there exist x ∈ Ce such that the dimension of Ce,x equals the rank of g? The
main result of that paper is a counter example to the question for the case where
g is of type F4.

With the lists of representatives of the nilpotent orbits we can easily tackle this
question in all simple Lie algebras of exceptional type. Let e ∈ g be a nilpotent
element, and let x1, . . . , xm be a basis of Ce. Set x = T1x1 + · · · + Tmxm. Then
the centralizer of x in Ce is equal to the kernel of adx (restricted to Ce). So the
dimension of Ce,x is minimal if the rank of the matrix adx is maximal. Now the
entries of this matrix are linear polynomials in the Ti. It follows that for a random
choice of the Ti, with very high probability, the rank of adx is maximal. So this
gives a probabilistic algorithm for determining the minimal dimension of Ce,x (recall
that we are varying x, and keeping e fixed). Once the minimal dimension is found
with this algorithm we can prove it rigorously as follows. Let x be an element
such that dimCe,x is (hypothetically) minimal, as produced by the algorithm. If
dimCe,x = rank(g) then we have proved that the minimal dimension of a Ce,x is
rank(g), as it cannot be smaller. Secondly, if the dimension that we find happens to
be bigger, then we compute the rank of the matrix adx, where x = T1x1+· · ·+Tmxm

and we let the Ti be generators of a rational function field. The rank of that matrix
will equal the maximal rank of any adx for x ∈ Ce.

Using this algorithm we arrive at the following result.

Proposition 1. Let g be a simple Lie algebra of exceptional type, and e ∈ g
nilpotent. Then the minimal dimension of a Ce,x is equal to rank(g), except in
three cases, which are listed in the following table:

type of g label of e dimension of minimal Ce,x

G2 A1 + Ã1 3
F4 Ã2 +A2 6
E8 A5 +A2 +A1 12

In all three cases it turns out that a minimal Ce,x is abelian. Furthermore, in
each case it is possible to choose the element x ∈ Ce such that it is homogeneous of
degree −1 with respect to the grading of g defined by the sl2-triple containing e.

In relation to [9] we remark the following. In [9] it is wrongly stated that in G2

all minimal Ce,x have dimension equal to rank(g). The result for F4 is the same as
in [9]. Finally, the problem for E8 is left open in [9].

Also, as a straightforward corollary of the proposition, it follows that in the
exceptional types a minimal Ce,x is always abelian.
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Appendix A. Representatives of nilpotent orbits

In the tables below we list the nilpotent orbits in the Lie algebras of exceptional
type. For each orbit we have given a label, the weighted Dynkin diagram, and the
Dynkin diagram of a representative. We remark the following. If more than one
label was possible, we have chosen the simplest one that we could find. This means
that we have preferred a label of the form Xn over a label of the form Xn(ai).
Furthermore, we have preferred labels such that the Dynkin diagram of a corre-
sponding representative has as few lines as possible. In the Dynkin diagram a black
node means that the corresponding root is long. Finally, the labels corresponding to
each node refer to the basis elements of the simple Lie algebras as present in GAP4.
In Appendix B we list the positive roots of each root system of exceptional type,
in the order in which they are used by GAP4. Now, if in the tables in this section
a Dynkin diagram of a representative has labels i1, . . . , ik, then the corresponding
representative is the sum of the root vectors corresponding to the ijth positive root
for 1 � j � k.

Table 2: Nilpotent orbits in the Lie algebra of type G2.

label diagram representative
� �

A1 1 0 �
6

Ã1 0 1 �
4

A1 + Ã1 2 0 �
2

�
4

G2 2 2 �
1

�
2

Table 3: Nilpotent orbits in the Lie algebra of type F4.

label diagram representative
� � � �

A1 1 0 0 0 �
24

Ã1 0 0 0 1 �
21

A1 + Ã1 0 1 0 0 �
17

�
22

A2 2 0 0 0 �
16

�
18

Ã2 0 0 0 2 �
11

�
12

Ã1 +A2 0 0 1 0 �
14

�
15

�
16

B2 2 0 0 1 �
9

�
15

Ã2 +A1 0 1 0 1 �
8

�
14

�
16

B2 +A1 1 0 1 0 �
10

�
11

�
15

Ã2 +A2 0 2 0 0 �
8

�
9

�
10

�
18
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Table 3 (continued). Nilpotent orbits in type F4

B3 2 2 0 0 �
8

�
2

�
10

C3 1 0 1 2 �
10

�
1

�
9

C3 +A1 0 2 0 2 �
6

�
5

�
7

�
13

B4 2 2 0 2 �
5

�
4

�
2

�
10

F4 2 2 2 2 �
1

�
3

�
4

�
2

Table 4: Nilpotent orbits in the Lie algebra of type E6.

label diagram representative

� � � � �

�

A1 0 0
1
0 0 0 �

36

2A1 1 0
0
0 0 1 �

30
�
34

3A1 0 0
0
1 0 0 �

24
�
32

�
33

A2 0 0
2
0 0 0 �

25
�
26

A2 +A1 1 0
1
0 0 1 �

25
�
26

�
23

2A2 2 0
0
0 0 2 �

17
�
21

�
18

�
20

2A1 +A2 0 1
0
0 1 0 �

22
�
25

�
23

�
24

A3 1 0
2
0 0 1 �

13
�
23

�
14

A1 + 2A2 1 0
0
1 0 1 �

24
�
12

�
20

�
21

�
22

A3 +A1 0 1
1
0 1 0 �

17
�
15

�
20

�
23

A3 + 2A1 0 0
0
2 0 0 �

17
�
16

�
19

�
9

�
18

A4 2 0
2
0 0 2 �

13
�
11

�
12

�
14

D4 0 0
2
2 0 0 �

12
�

2
�
15

�
16

A4 +A1 1 1
1
0 1 1 �

13
�
11

�
12

�
14

�
15

A5 2 1
1
0 1 2 �

13
�
1

�
15

�
6

�
14

D5(a1) 1 1
2
0 1 1 �7 �12

�8 �11�
15

A5 +A1 2 0
0
2 0 2 �

8
�
11

�
9

�
1

�
19

�
10
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Table 4 (continued). Nilpotent orbits in type E6

D5 2 0
2
2 0 2 �

9
�
2

�
10

�
7

�6

E6(a1) 2 2
2
0 2 2 �2 �8

�9 �5�
1

�6

E6 2 2
2
2 2 2 �

1
�
3

�
4

�
5

�
6

�2

Table 5: Nilpotent orbits in the Lie algebra of type E7.

label diagram representative

� � � � � �

�

A1 1 0
0
0 0 0 0 �

63

2A1 0 0
0
0 0 1 0 �

57
�
60

(3A1)′′ 0 0
0
0 0 0 2 �

47
�
48

�
49

(3A1)′ 0 1
0
0 0 0 0 �

42
�
56

�
59

A2 2 0
0
0 0 0 0 �

44
�
46

4A1 0 0
1
0 0 0 1 �

45
�
47

�
52

�
53

A2 +A1 1 0
0
0 0 1 0 �

44
�
46

�
49

A2 + 2A1 0 0
0
1 0 0 0 �

41
�
43

�
42

�
51

A3 2 0
0
0 0 1 0 �

20
�
49

�
21

2A2 0 0
0
0 0 2 0 �

34
�
35

�
36

�
43

A2 + 3A1 0 0
2
0 0 0 0 �

39
�
40

�
37

�
38

�
41

(A3 +A1)′′ 2 0
0
0 0 0 2 �

27
�
30

�
37

�
31

2A2 +A1 0 1
0
0 0 1 0 �

34
�
35

�
36

�
43

�
37

(A3 +A1)′ 1 0
0
1 0 0 0 �

27
�
28

�
39

�
49

(A3 + 2A1)′ 0 2
0
0 0 0 0 �

29
�
32

�
31

�
27

�
39

(A3 + 2A1)′′ 1 0
0
0 1 0 1 �

27
�
30

�
37

�
31

�
40

D4 2 2
0
0 0 0 0

�
28

�

1
�
31

�
29
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Table 5 (continued). Nilpotent orbits in E7.

A3 + 3A1 0 1
1
0 0 0 1 �

32
�
31

�
33

�
22

�
30

�
35

A3 +A2 0 0
0
1 0 1 0 �

29
�
32

�
31

�
27

�
30

A4 2 0
0
0 0 2 0 �

21
�
29

�
25

�
20

A3 +A2 +A1 0 0
0
0 2 0 0 �

26
�
25

�
29

�
27

�
28

�
47

(A5)′′ 2 0
0
0 0 2 2 �

20
�
24

�
7

�
23

�
21

D4 +A1 2 1
1
0 0 0 1 �

28
�

1
�
31

�
29

�
30

A4 +A1 1 0
0
1 0 1 0 �

20
�
25

�
29

�
21

�
28

D4 + 2A1 2 0
0
1 0 1 0 �

18
�

8
�
28

�
30

�
29

�
31

A4 +A2 0 0
0
2 0 0 0 �

22
�
25

�
20

�
24

�
21

�
23

(A5)′ 1 0
0
1 0 2 0 �

20
�
12

�
28

�
13

�
21

(A5 +A1)′′ 1 0
0
1 0 1 2 �

20
�
18

�
7

�
29

�
21

�
28

D5(a1) +A1 2 0
0
0 2 0 0 �19 �30

�
20

�17�
18

�
29

D6(a2) 0 1
1
0 1 0 2 �23 �16

�
21

�13�
15

�24

(A5 +A1)′ 0 2
0
0 0 2 0 �

15
�
19

�
14

�
23

�
17

�
26

D5 2 2
0
0 0 2 0 �

17
�
1

�
15

�
19

�18

A5 +A2 0 0
0
2 0 0 2 �

16
�
14

�
19

�
15

�
18

�
17

�
33

A6 0 0
0
2 0 2 0 �

15
�
12

�
14

�
16

�
13

�
17

D5 +A1 2 1
1
0 1 0 2 �

17
�
1

�
15

�
19

�18

�
16

D6(a1) 2 1
1
0 1 0 2

�
15

�13 �7

�
17

�23�
1
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Table 5 (continued). Nilpotent orbits in E7.

D6(a1) +A1 2 0
0
2 0 0 2

�
23

�15 �22

�
11

�13�
8

�
24

D6 2 1
1
0 1 2 2 �

15
�
1

�
17

�
6

�
16

�7

A7 2 0
0
2 0 2 0 �

15
�
12

�
4

�
8

�
16

�
13

�
17

E6 2 2
0
2 0 2 0 �

12
�
9

�
3

�
11

�
13

�1

D6 +A1 2 0
0
2 0 2 2 �

11
�
8

�
9

�
12

�
10

�7

�
22

E7(a2) 2 2
2
0 2 0 2 �9 �12

�
2

�10�
11

�7

�1

E7(a1) 2 2
2
0 2 2 2

�
7

�9 �2

�
5

�10�
6

�
1

E7 2 2
2
2 2 2 2 �

1
�
3

�
4

�
5

�
6

�2

�
7

Table 6: Nilpotent orbits in the Lie algebra of type E8.

label diagram representative

� � � � � � �

�

A1 0 0
0
0 0 0 0 1 �

120

2A1 1 0
0
0 0 0 0 0 �

113
�
114

3A1 0 0
0
0 0 0 1 0 �

104
�
105

�
106

A2 0 0
0
0 0 0 0 2 �

88
�
90

4A1 0 0
1
0 0 0 0 0 �

95
�
97

�
98

�
103

A2 +A1 1 0
0
0 0 0 0 1 �

88
�
90

�
97

A2 + 2A1 0 0
0
0 0 1 0 0 �

83
�
85

�
91

�
92

A3 1 0
0
0 0 0 0 2 �

42
�
97

�
43

A2 + 3A1 0 1
0
0 0 0 0 0 �

77
�
80

�
82

�
84

�
90
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Table 6 (continued). Nilpotent orbits in E8.

2A2 2 0
0
0 0 0 0 0 �

70
�
73

�
71

�
81

2A2 +A1 1 0
0
0 0 0 1 0 �

70
�
73

�
72

�
80

�
74

A3 +A1 0 0
0
0 0 1 0 1 �

62
�
66

�
65

�
93

(A3 + 2A1)′ 0 0
0
0 0 0 2 0 �

61
�
60

�
64

�
62

�
78

D4 0 0
0
0 0 0 2 2 �

53
�

8
�
55

�
71

2A2 + 2A1 0 0
0
0 1 0 0 0 �

69
�
74

�
70

�
73

�
71

�
72

(A3 + 2A1)′′ 0 1
0
0 0 0 0 1 �

67
�
58

�
68

�
69

�
82

A3 + 3A1 0 0
1
0 0 0 1 0 �

59
�
56

�
71

�
69

�
72

�
73

A3 +A2 1 0
0
0 0 1 0 0 �

45
�
74

�
57

�
58

�
67

A4 2 0
0
0 0 0 0 2 �

42
�
57

�
53

�
43

A3 +A2 +A1 0 0
0
1 0 0 0 0 �

52
�
58

�
62

�
60

�
61

�
78

D4 +A1 0 0
1
0 0 0 1 2 �

55
�

8
�
58

�
66

�
69

A3 +A2 + 2A1 0 0
2
0 0 0 0 0 �

57
�
56

�
59

�
54

�
61

�
45

�
58

A4 +A1 1 0
0
0 0 1 0 1 �

42
�
57

�
53

�
43

�
61

2A3 1 0
0
0 1 0 0 0 �

44
�
68

�
46

�
45

�
55

�
47

D4 + 2A1 1 0
0
0 0 1 0 2 �

45
�

15
�
57

�
61

�
58

�
59

A4 + 2A1 0 0
0
1 0 0 0 1 �

47
�
49

�
52

�
50

�
51

�
64

A4 +A2 0 0
0
0 0 2 0 0 �

46
�
48

�
47

�
49

�
45

�
50

A5 2 0
0
0 0 1 0 1 �

42
�
24

�
61

�
23

�
43

D5(a1) +A1 0 0
0
1 0 0 0 2 �59 �53

�
22

�48�
44

�
71

A4 +A2 +A1 0 1
0
0 0 1 0 0 �

46
�
48

�
47

�
49

�
45

�
50

�
44

D4 +A2 0 0
2
0 0 0 0 2 �

34
�

43
�
37

�
38

�
40

�
64
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Table 6 (continued). Nilpotent orbits in E8.

(A5 +A1)′′ 2 0
0
0 0 0 2 0 �

34
�
44

�
36

�
38

�
35

�
50

D5 2 0
0
0 0 0 2 2 �

49
�
8

�
21

�
37

�51

A4 +A3 0 0
0
1 0 0 1 0 �

44
�
42

�
39

�
48

�
41

�
45

�
43

(A5 +A1)′ 1 0
0
1 0 0 0 1 �

36
�
46

�
32

�
31

�
50

�
61

D5(a1) +A2 0 1
0
0 0 1 0 1 �59 �39

�
22

�48�
44

�
38

�
49

D4 +A3 0 1
1
0 0 0 1 0 �

34
�

43
�
37

�
38

�
25

�
39

�
40

A5 + 2A1 1 0
0
0 1 0 1 0 �

42
�
31

�
41

�
37

�
43

�
28

�
48

A5 +A2 0 0
0
1 0 1 0 0 �

20
�
41

�
37

�
43

�
38

�
39

�
42

D5 +A1 1 0
0
0 1 0 1 2 �

34
�
8

�
35

�
37

�38

�
48

A5 +A2 +A1 0 0
0
0 2 0 0 0 �

5
�
40

�
39

�
42

�
44

�
38

�
43

�
41

A6 2 0
0
0 0 2 0 0 �

34
�
24

�
33

�
36

�
23

�
35

D5 + 2A1 0 1
1
0 0 0 1 2 �

34
�
8

�
35

�
37

�38

�
25

�
40

A6 +A1 1 0
0
1 0 1 0 0 �

34
�
24

�
33

�
36

�
23

�
35

�
32

D6(a1) +A1 0 0
0
1 0 1 0 2

�
34

�37 �32

�
35

�38�
8

�
20

(A7)′′ 2 0
0
0 0 2 0 2 �

20
�
44

�
34

�
8

�
35

�
1

�
33

D5 +A2 0 0
0
0 2 0 0 2 �

41
�
8

�
39

�
26

�32

�
27

�
30

D6 2 1
1
0 0 0 1 2 �

34
�
8

�
35

�
1

�
32

�33

E6 2 0
0
0 0 2 2 2 �

44
�
26

�
7

�
27

�
1

�8
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Table 6 (continued). Nilpotent orbits in E8.

D5 +A3 1 0
0
1 0 1 0 1 �

32
�
29

�
23

�
27

�28

�
26

�
24

�
41

(A7)′ 1 0
0
1 0 1 1 0 �

26
�
24

�
14

�
32

�
29

�
23

�
27

A7 +A1 1 0
0
1 0 1 0 2 �

28
�
30

�
27

�
15

�
26

�
16

�
41

�
32

D6 +A1 2 0
0
1 0 1 0 2 �

27
�
15

�
26

�
9

�
28

�32

�
41

D8(a3) 0 0
0
2 0 0 0 2

�
4

�34 �
26

�
31

�15�
25

�
35

�
23

D6 + 2A1 2 0
0
0 2 0 0 2 �

18
�
22

�
19

�
23

�
20

�21

�
33

�
49

E6 +A1 1 0
0
1 0 1 2 2 �

24
�
26

�
7

�
27

�
23

�8

�
32

E7(a2) 0 1
1
0 1 0 2 2 �26 �18

�
24

�14�
17

�27

�8

A8 0 0
0
2 0 0 2 0 �

4
�
25

�
14

�
24

�
26

�
15

�
27

�
23

D7 2 1
1
0 1 1 0 1 �

18
�
22

�
19

�
1

�
17

�28

�13

E6 +A2 0 0
0
2 0 0 2 2 �

4
�
25

�
14

�
24

�
26

�8

�
23

�
27

E7(a1) 2 1
1
0 1 0 2 2

�
17

�26 �18

�
19

�14�
1

�
8

D8(a1) 2 0
0
2 0 0 2 0

�
4

�26 �18

�
17

�1�
21

� �
19 22

E7(a1) +A1 2 0
0
2 0 0 2 2

�
4

�27 �19

�
18

�14�
9

�
8

�17

E7 2 1
1
0 1 2 2 2 �

8
�
7

�
6

�
19

�
1

�18

�
17
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Table 6 (continued). Nilpotent orbits in E8.

D8 2 0
0
2 0 2 0 2 �

4
�
13

�
17

�
1

�
19

�18

�
14

�
8

E7 +A1 2 0
0
2 0 2 2 2 �

8
�
7

�
6

�
12

�
9

�25

�
10

�
11

E8(a2) 2 2
2
0 2 0 2 2

�
8

�10 �2

�
5

�11�
14

�20

�1

E8(a1) 2 2
2
0 2 2 2 2

�
8

�
7

�10 �2

�
5

�11�
6

�
1

E8 2 2
2
2 2 2 2 2 �

1
�
3

�
4

�
5

�
6

�2

�
7

�
8

Appendix B. The exceptional root systems in GAP

In this appendix we list the positive roots of the exceptional root systems, in the
order in which they appear in GAP4. The tables have to be read from left to right,
and from top to bottom. So the first root is the one top left, the second root is the
second one on the first line, and the last root is the one bottom right. For each root
its coefficients with respect to a basis of simple roots are given.

The roots for F4 in Table 8 may seem slightly strange. This is due to the fact
that in GAP4 the positive roots are ordered differently than usual. In this table the
coefficients of each root with respect to the “usual” ordering of a basis of simple
roots is given (i.e., as in [1]). However, the roots are listed in the same order as
they are in GAP4.

Table 7: Positive roots in the root system of type G2.

10 01 11 21 31 32

Table 8: Positive roots in the root system of type F4.

0001 1000 0010 0100 0011 1100 0110 0111
1110 0120 1111 0121 1120 1121 0122 1220
1221 1122 1231 1222 1232 1242 1342 2342
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Table 9: Positive roots in the root system of type E6.

10
0
000 00

1
000 01

0
000 00

0
100 00

0
010 00

0
001 11

0
000 00

1
100 01

0
100

00
0
110 00

0
011 11

0
100 01

1
100 00

1
110 01

0
110 00

0
111 11

1
100 11

0
110

01
1
110 00

1
111 01

0
111 11

1
110 11

0
111 01

1
210 01

1
111 11

1
210 11

1
111

01
1
211 12

1
210 11

1
211 01

1
221 12

1
211 11

1
221 12

1
221 12

1
321 12

2
321

Table 10: Positive roots in the root system of type E7.

10
0
0000 00

1
0000 01

0
0000 00

0
1000 00

0
0100 00

0
0010 00

0
0001

11
0
0000 00

1
1000 01

0
1000 00

0
1100 00

0
0110 00

0
0011 11

0
1000

01
1
1000 00

1
1100 01

0
1100 00

0
1110 00

0
0111 11

1
1000 11

0
1100

01
1
1100 00

1
1110 01

0
1110 00

0
1111 11

1
1100 11

0
1110 01

1
2100

01
1
1110 00

1
1111 01

0
1111 11

1
2100 11

1
1110 11

0
1111 01

1
2110

01
1
1111 12

1
2100 11

1
2110 11

1
1111 01

1
2210 01

1
2111 12

1
2110

11
1
2210 11

1
2111 01

1
2211 12

1
2210 12

1
2111 11

1
2211 01

1
2221

12
1
3210 12

1
2211 11

1
2221 12

2
3210 12

1
3211 12

1
2221 12

2
3211

12
1
3221 12

2
3221 12

1
3321 12

2
3321 12

2
4321 13

2
4321 23

2
4321

Table 11: Positive roots in the root system of type E8.

10
0
00000 00

1
00000 01

0
00000 00

0
10000 00

0
01000 00

0
00100

00
0
00010 00

0
00001 11

0
00000 00

1
10000 01

0
10000 00

0
11000

00
0
01100 00

0
00110 00

0
00011 11

0
10000 01

1
10000 00

1
11000

01
0
11000 00

0
11100 00

0
01110 00

0
00111 11

1
10000 11

0
11000

01
1
11000 00

1
11100 01

0
11100 00

0
11110 00

0
01111 11

1
11000

11
0
11100 01

1
21000 01

1
11100 00

1
11110 01

0
11110 00

0
11111

11
1
21000 11

1
11100 11

0
11110 01

1
21100 01

1
11110 00

1
11111

01
0
11111 12

1
21000 11

1
21100 11

1
11110 11

0
11111 01

1
22100

01
1
21110 01

1
11111 12

1
21100 11

1
22100 11

1
21110 11

1
11111

01
1
22110 01

1
21111 12

1
22100 12

1
21110 11

1
22110 11

1
21111
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Table 11 (continued). Positive roots in E8

01
1
22210 01

1
22111 12

1
32100 12

1
22110 12

1
21111 11

1
22210

11
1
22111 01

1
22211 12

2
32100 12

1
32110 12

1
22210 12

1
22111

11
1
22211 01

1
22221 12

2
32110 12

1
32210 12

1
32111 12

1
22211

11
1
22221 12

2
32210 12

2
32111 12

1
33210 12

1
32211 12

1
22221

12
2
33210 12

2
32211 12

1
33211 12

1
32221 12

2
43210 12

2
33211

12
2
32221 12

1
33221 13

2
43210 12

2
43211 12

2
33221 12

1
33321

23
2
43210 13

2
43211 12

2
43221 12

2
33321 23

2
43211 13

2
43221

12
2
43321 23

2
43221 13

2
43321 12

2
44321 23

2
43321 13

2
44321

23
2
44321 13

2
54321 23

2
54321 13

3
54321 23

3
54321 24

2
54321

24
3
54321 24

3
64321 24

3
65321 24

3
65421 24

3
65431 24

3
65432
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