Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-2ktwh Total loading time: 0.503 Render date: 2021-04-19T19:45:01.116Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Ricasolia amplissima (Lobariaceae): one species, three genotypes and a new taxon from south-eastern Alaska

Published online by Cambridge University Press:  14 November 2017

Carolina CORNEJO
Affiliation:
Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland. Email: carolina.cornejo@wsl.ch
Chiska DERR
Affiliation:
8454 Kimberly Street, Juneau, AK 99801, USA
Karen DILLMAN
Affiliation:
USDA Forest Service, Tongass National Forest, P.O. Box 309, Petersburg, AK 99833, USA
Corresponding
E-mail address:

Abstract

The genetic diversity within the foliose form of Ricasolia amplissima from Europe and North America was studied using molecular phylogenetic analysis of the nuclear ITS and RPB2, and mitochondrial SSU. Boundaries between closely related species were also examined using morphological and chemical patterns. Four species of the recently reinstated lichen genus Ricasolia De Not. were phylogenetically verified which necessitated a new combination, Ricasolia japonica (Asah.) Cornejo. Analyses suggest that the generic type taxon R. amplissima (Scop.) De Not. belongs to a species complex that shows two evolutionary centres, one in Europe, North Africa, Asia Minor and the Macaronesian Islands, the other from north-western North America on exposed shores of mainly forested marine islands in south-eastern Alaska, where it shows strong habitat specificity. The Alaskan lineage is very similar to the European lineage but it differs by the lack of scrobiculin and other chemical substances. It is described here as R. amplissima subsp. sheiyi Derr & Dillman.

Type
Articles
Copyright
© British Lichen Society, 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Akaike, H. (1973) Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60: 255265.CrossRefGoogle Scholar
Ariyawansa, H. A., Hawksworth, D. L., Hyde, K. D., Jones, E. B. G., Maharachchikumbura, S. S. N., Manamgoda, D. S., Thambugala, K. M., Udayanga, D., Camporesi, E., Daranagama, A., et al. (2014) Epitypification and neotypification: guidelines with appropriate and inappropriate examples. Fungal Diversity 69: 5791.CrossRefGoogle Scholar
Armaleo, D. & Clerc, P. (1991) Lichen chimeras – DNA analysis suggests that one fungus forms 2 morphotypes. Experimental Mycology 15: 110.CrossRefGoogle Scholar
Asplund, J., Larsson, P., Vatne, S. & Gauslaa, Y. (2010) Gastropod grazing shapes the vertical distribution of epiphytic lichens in forest canopies. Journal of Ecology 98: 218225.CrossRefGoogle Scholar
Braidwood, D. & Ellis, C. J. (2012) Bioclimatic equilibrium for lichen distributions on disjunct continental landmasses. Botany 90: 13161325.CrossRefGoogle Scholar
Burgaz, A. R. & Tretiach, M. (2002) Lectotypification of Lobaria amplissima (Scop.) Forssell (Lobariaceae, Ascomycotina). Taxon 51: 765766.CrossRefGoogle Scholar
Cameron, R. (2009) Are non-native gastropods a threat to endangered lichens? Canadian Field-Naturalist 123: 169171.CrossRefGoogle Scholar
Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540552.CrossRefGoogle ScholarPubMed
Cornejo, C. & Scheidegger, C. (2010) Lobaria macaronesica sp. nov., and the phylogeny of Lobaria sect. Lobaria (Lobariaceae) in Macaronesia. Bryologist 113: 590604.CrossRefGoogle Scholar
Cornejo, C. & Scheidegger, C. (2013 a) New morphological aspects of cephalodium formation in the lichen Lobaria pulmonaria (Lecanorales, Ascomycota). Lichenologist 45: 7787.CrossRefGoogle Scholar
Cornejo, C. & Scheidegger, C. (2013 b) Morphological aspects associated with repair and regeneration in Lobaria pulmonaria and L. amplissima (Peltigerales, Ascomycota). Lichenologist 45: 285289.CrossRefGoogle Scholar
Cornejo, C. & Scheidegger, C. (2015) Multi-gene phylogeny of the genus Lobaria: evidence of species-pair and allopatric cryptic speciation in East Asia. American Journal of Botany 102: 20582073.CrossRefGoogle ScholarPubMed
Culberson, C. F. (1967 a) The structure of scrobiculin, a new lichen depside in Lobaria scrobiculata and Lobaria amplissima . Phytochemistry 6: 719725.CrossRefGoogle Scholar
Culberson, C. F. (1967 b) Some microchemical tests for two new lichen substances, scrobiculin and 4-0-methylphysodic acid. Bryologist 70: 7075.CrossRefGoogle Scholar
Culberson, C. F. (1969) Chemical studies in the genus Lobaria and the occurrence of a new tridepside, 4-0-methylgyrophoric acid. Bryologist 72: 1927.CrossRefGoogle Scholar
Culberson, C. F. & Ammann, K. (1979) Standardmethode zur Dünnschichtchromatographie von Flechtensubstanzen. Herzogia 5: 124.Google Scholar
Culberson, W. L. (1972) Disjunctive distributions in the lichen-forming fungi. Annals of the Missouri Botanical Garden 59: 165173.CrossRefGoogle Scholar
Dal Grande, F., Beck, A., Cornejo, C., Singh, G., Cheenacharoen, S., Nelsen, M. P. & Scheidegger, C. (2014) Molecular phylogeny and symbiotic selectivity of the green algal genus Dictyochloropsis s.l. (Trebouxiophyceae): a polyphyletic and widespread group forming photobiont-mediated guilds in the lichen family Lobariaceae . New Phytologist 202: 455470.CrossRefGoogle ScholarPubMed
Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., et al. (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 36: W465W469.CrossRefGoogle ScholarPubMed
Dettman, J. R., Jacobson, D. J. & Taylor, J. W. (2003) A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora . Evolution 57: 27032720.CrossRefGoogle ScholarPubMed
Dettman, J. R., Jacobson, D. J. & Taylor, J. W. (2006) Multilocus sequence data reveal extensive phylogenetic species diversity within the Neurospora discreta complex. Mycologia 98: 436446.CrossRefGoogle ScholarPubMed
DeWeerdt, S. (2002) What really is an evolutionarily significant unit? The debate over integrating genetics and ecology in conservation biology. Conservation in Practice 3: 1019.CrossRefGoogle Scholar
Dillman, K. L. (2004) Epiphytic lichens from the forest-marine ecotone of southeastern Alaska. M.Sc. thesis, Arizona State University.Google Scholar
Dillman, K. L. (2010) Conservation assessment of Lobaria amplissima (Scop.) Forss. Region 10 Sensitive Species. USDA Forest Service, unpublished report.Google Scholar
Drummond, A. J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.CrossRefGoogle ScholarPubMed
Elix, J. A. & Tønsberg, T. (2006) Notes on the chemistry of Scandinavian Lobaria species. Graphis scripta 18: 2728.Google Scholar
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783791.CrossRefGoogle ScholarPubMed
Feuerer, T. & Hawksworth, D. L. (2007) Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions. Biodiversity and Conservation 16: 8598.CrossRefGoogle Scholar
Geiser, L. H., Dillman, K. L., Derr, C. C. & Stensvold, M. C. (1998) Lichens and allied fungi of southeast Alaska. In Lichenographia Thomsoniana: North American Lichenology in Honor of John W. Thomson (M. G. Glenn, R. C. Harris, R. Dirig & M. S. Cole, eds): 201243. Ithaca, New York: Mycotaxon Ltd.Google Scholar
Goward, T. (1994) Notes on old-growth-dependent epiphytic macrolichens in inland British Columbia, Canada. Acta Botanica Fennica 150: 3138.Google Scholar
Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696704.CrossRefGoogle ScholarPubMed
Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307321.CrossRefGoogle ScholarPubMed
Hale, M. E. (1957) The Lobaria amplissimaL. quercizans complex in Europe and North America. Bryologist 60: 3539.CrossRefGoogle Scholar
Hale, M. E. (1961) The occurrence of Lobaria amplissima (Hoffm.) Schreb. in tropical America. Lichenologist 1: 266267.CrossRefGoogle Scholar
Hale, M. E. & Culberson, W. L. (1966) A third checklist of the lichens of the continental United States and Canada. Bryologist 69: 141182.CrossRefGoogle Scholar
Hale, M. E. & Culberson, W. L. (1970) A fourth checklist of the lichens of the continental United States and Canada. Bryologist 73: 499543.CrossRefGoogle Scholar
Honegger, R. (2003) The impact of different long-term storage conditions on the viability of lichen-forming ascomycetes and their green algal photobiont, Trebouxia spp. Plant Biology 5: 324330.CrossRefGoogle Scholar
Huneck, S., Follmann, G. & Redón, J. (1973) Mitteilungen über Flechteninhaltsstoffe XCVI. Identifizierung einiger Flechtenstoffe aus der Belegsammlung Friedrich Wilhelm Zopfs. Willdenowia 7: 3145.Google Scholar
Hurvich, C. M. & Tsai, C.-L. (1989) Regression and time series model selection in small samples. Biometrika 76: 297307.CrossRefGoogle Scholar
Hyde, K. D. & Zhang, Y. (2008) Epitypification: should we epitypify? Journal of Zhejiang University-Science B 9: 842846.CrossRefGoogle ScholarPubMed
James, P. W. & Henssen, A. (1976) The morphological and taxonomic significance of cephalodia. In Lichenology: Progress and Problems (D. H. Brown, D. L. Hawksworth & R. H. Bailey, eds): 2777. London: Academic Press.Google Scholar
Jordan, W. P. (1973) The genus Lobaria in North America north of Mexico. Bryologist 76: 225251.CrossRefGoogle Scholar
Kaule, A. (1932) Die Cephalodien der Flechten. Flora 126: 144.Google Scholar
Lesher, R., Derr, C. & Geiser, L. H. (2003) Natural History and Management Considerations for Northwest Forest Plan Survey and Manage Lichens. Natural Resources Technical Paper: R6-NR-S&M-TP-03-03. Portland, Oregon: USDA Forest Service, Pacific Northwest Region.Google Scholar
Manos, P. S. & Meireles, J. E. (2015) Biogeographic analysis of the woody plants of the Southern Appalachians: implications for the origins of a regional flora. American Journal of Botany 102: 780804.CrossRefGoogle ScholarPubMed
Martin, J. R., Trull, S. J., Brady, W. W., West, R. A. & Downs, J. M. (1995) Forest Plant Association Management Guide – Chatham Area, Tongass National Forest. Juneau: USDA Forest Service, Alaska Region.Google Scholar
McCune, B. & Geiser, L. (2009) Macrolichens of the Pacific Northwest. 2nd edition. Corvallis: Oregon State University Press.Google Scholar
McCune, B., Rosentreter, R., Spribille, T., Breuss, O. & Wheeler, T. (2014) Montana Lichens: An Annotated List. Corvallis, Oregon: Northwest Lichenologists.Google Scholar
McNeill, J., Barrie, F., Buck, W., Demoulin, V., Greuter, W., Hawksworth, D., Herendeen, P., Knapp, S., Marhold, K. & Prado, J. (2012) International Code of Nomenclature for Algae, Fungi and Plants. Königstein: Koeltz Scientific Books.Google Scholar
Miadlikowska, J., Schoch, C. L., Kageyama, S. A., Molnar, K., Lutzoni, F. & McCune, B. (2011) Hypogymnia phylogeny, including Cavernularia, reveals biogeographic structure. Bryologist 114: 392400.CrossRefGoogle Scholar
Micheli, P. A. (1729) Nova Plantarum Genera iuxta Tournefortii Methodum Disposita. Florentiae: B. Paperino.Google Scholar
Miller, M. A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, Louisiana, pp. 1–8. http://dx.doi.org/10.1109/GCE.2010.5676129.CrossRefGoogle Scholar
Moncada, B., Lücking, R. & Betancourt-Macuase, L. (2013) Phylogeny of the Lobariaceae (lichenized Ascomycota: Peltigerales), with a reappraisal of the genus Lobariella . Lichenologist 45: 203263.CrossRefGoogle Scholar
Moreau, M. F. (1921) Lichens de la famille des Stictacées. Annales des Sciences Naturelles Botanique, Dixième Série 3: 297376.Google Scholar
Moritz, C. (1995) Uses of molecular phylogenies for conservation. Philosophical Transactions of the Royal Society of London, Series B 349: 113118.CrossRefGoogle Scholar
Ohlsson, K. E. (1973) New and interesting macrolichens of British Columbia. Bryologist 76: 366387.CrossRefGoogle Scholar
Otte, V. (2007) Biodiversity of lichens and lichenicolous fungi of Mt Bol’šoj Thač (NW Caucasus) and its vicinity. Abhandlungen und Berichte des Naturkundemuseums Görlitz 79: 131140.Google Scholar
Posada, D. (2006) ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Research 34: W700W703.CrossRefGoogle ScholarPubMed
Posada, D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 12531256.CrossRefGoogle ScholarPubMed
Printzen, C., Ekman, S. & Tønsberg, T. (2003) Phylogeography of Cavernularia hultenii: evidence of slow genetic drift in a widely disjunct lichen. Molecular Ecology 12: 14731486.CrossRefGoogle Scholar
Purvis, O. W., Coppins, B. J., Hawksworth, D. L., James, P. W. & Moore, D. M. (1992) The Lichen Flora of Great Britain and Ireland. London: British Lichen Society.Google Scholar
Scheidegger, C. & Clerc, P. (2002) Erdbewohnende Flechten der Schweiz. In Rote Liste der gefährdeten Arten der Schweiz: Baum-und erdbewohnende Flechten (C. Scheidegger, P. Clerc, M. Dietrich, M. Frei, U. Groner, C. Keller, I. Roth, S. Stofer & M. Vust, eds): 75108. Bern: BUWAL.Google Scholar
Schofield, W. (1988) Bryophyte disjunctions in the Northern Hemisphere: Europe and North America. Botanical Journal of the Linnean Society 98: 211224.CrossRefGoogle Scholar
Schofield, W. & Crum, H. (1972) Disjunctions in bryophytes. Canadian Journal of Botany 50: 11111133.CrossRefGoogle Scholar
Schumm, F. (2003) Die Flechtengattung Lobaria auf Madeira. Herzogia 16: 91112.Google Scholar
Shaw, A. J. (2001) Biogeographic patterns and cryptic speciation in bryophytes. Journal of Biogeography 28: 253261.CrossRefGoogle Scholar
Shaw, A. J., Werner, O. & Ros, R. M. (2003) Intercontinental Mediterranean disjunct mosses: morphological and molecular patterns. American Journal of Botany 90: 540550.CrossRefGoogle ScholarPubMed
Sipman, H. & Wolf, J. (1998) Provisional checklist for the lichens of Chiapas. Acta Botanica Mexicana 45: 129.CrossRefGoogle Scholar
Stenroos, S., Stocker-Wörgötter, E., Yoshimura, I., Myllys, L., Thell, A. & Hyvonen, J. (2003) Culture experiments and DNA sequence data confirm the identity of Lobaria photomorphs. Canadian Journal of Botany 81: 232247.CrossRefGoogle Scholar
Stenroos, S., Hognabba, F., Myllys, L., Hyvonen, J. & Thell, A. (2006) High selectivity in symbiotic associations of lichenized ascomycetes and cyanobacteria. Cladistics 22: 230238.CrossRefGoogle Scholar
Stoever, B. C. & Mueller, K. F. (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11: 7.CrossRefGoogle Scholar
Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56: 564577.CrossRefGoogle ScholarPubMed
Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S. & Fisher, M. C. (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 2132.CrossRefGoogle ScholarPubMed
Tønsberg, T. & Goward, T. (2001) Sticta oroborealis sp. nov., and other Pacific North American lichens forming dendriscocauloid cyanotypes. Bryologist 104: 1223.CrossRefGoogle Scholar
Tønsberg, T. & Holtan-Hartwig, J. (1983) Phycotype pairs in Nephroma, Peltigera and Lobaria in Norway. Nordic Journal of Botany 3: 681688.CrossRefGoogle Scholar
Tønsberg, T., Blom, H. H., Goffinet, B., Holtan-Hartwig, J. & Lindblom, L. (2016) The cyanomorph of Ricasolia virens comb. nov. (Lobariaceae, lichenized Ascomycetes). Opuscula Philolichenum 15: 1221.Google Scholar
Türk, R. & Hafellner, J. (1999) Rote Liste der gefährdeten Flechten (Lichenes) in Österreich. 2. Fassung. Grüne Reihe des Bundesministeriums für Umwelt, Jugend und Familie 10: 187228.Google Scholar
Umaña, L. & Sipman, H. (2002) Líquenes de Costa Rica. Santo Domingo de Heredia, Costa Rica: INBio.Google Scholar
Weber, W. A. & Viereck, L. A. (1967) Lichens of Mt. McKinley National Park, Alaska. Bryologist 70: 227235.CrossRefGoogle Scholar
White, F. J. & James, P. W. (1985) A New Guide to Microchemical Techniques for the Identification of Lichen Substances. London: British Lichen Society.Google Scholar
Wirth, V., Hauck, M., Von Brackel, W., Cezanne, R., De Bruyn, U., Dürhammer, O., Eichler, M., Gnüchtel, A., John, V. & Litterski, B. (2011) Rote Liste und Artenverzeichnis der Flechten und flechtenbewohnenden Pilze Deutschlands. Naturschutz und Biologische Vielfalt 70: 7122.Google Scholar
Xiang, Q.-Y. & Soltis, D. E. (2001) Dispersal-vicariance analyses of intercontinental disjuncts: historical biogeographical implications for angiosperms in the Northern Hemisphere. International Journal of Plant Sciences 162: S29S39.CrossRefGoogle Scholar
Xiang, Q.-Y., Soltis, D. E. & Soltis, P. S. (1998) The eastern Asian and eastern and western North American floristic disjunction: congruent phylogenetic patterns in seven diverse genera. Molecular Phylogenetics and Evolution 10: 178190.CrossRefGoogle ScholarPubMed
Xiang, J.-Y., Wen, J. & Peng, H. (2015) Evolution of the eastern Asian-North American biogeographic disjunctions in ferns and lycophytes. Journal of Systematics and Evolution 53: 232.CrossRefGoogle Scholar
Yoshimura, I. (1971) The genus Lobaria of Eastern Asia. Journal of the Hattori Botanical Laboratory 34: 231264.Google Scholar
Zalewska, A. & Bohdan, A. (2012) New records of Lobaria amplissima (Lobariaceae, Ascomycota) in Poland. Acta Mycologica 47: 109119.CrossRefGoogle Scholar
Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511516.CrossRefGoogle Scholar

Cornejo et al supplementary material

Table S1

File 520 KB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 23
Total number of PDF views: 156 *
View data table for this chart

* Views captured on Cambridge Core between 14th November 2017 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ricasolia amplissima (Lobariaceae): one species, three genotypes and a new taxon from south-eastern Alaska
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Ricasolia amplissima (Lobariaceae): one species, three genotypes and a new taxon from south-eastern Alaska
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Ricasolia amplissima (Lobariaceae): one species, three genotypes and a new taxon from south-eastern Alaska
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *