Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-bcmtx Total loading time: 0.384 Render date: 2021-04-19T13:30:48.714Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Molecular and morphological diversity in photobionts associated with Micarea s. str. (Lecanorales, Ascomycota)

Published online by Cambridge University Press:  02 November 2015

Rebecca Yahr
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK. Email: r.yahr@rbge.ac.uk
Anna Florence
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK. Email: r.yahr@rbge.ac.uk
Pavel Škaloud
Affiliation:
Charles University in Prague, Department of Botany, Benátská 2, 12801 Praha 2, Czech Republic
Anna Voytsekhovich
Affiliation:
M.G. Kholodny Institute of Botany of the NAS of Ukraine, Tereshchenkivska str. 2, Kyiv 01601, Ukraine
Corresponding
E-mail address:

Abstract

Lichenization is a symbiotic ecological strategy that is widely distributed among the fungi, but in which the diversity of partners is relatively poorly known. Limited morphological diversity has hindered the recognition of true diversity in many lichen fungi, and also in their algal partners. In the temperate and boreal zones, the crustose microlichens are the most speciose but arguably the least studied, particularly in terms of their photobiont partners. In this study, we sampled eight species of Micarea s. str. collected from Europe, culturing and sequencing their green-algal partners using chloroplast (rbcL) and nuclear ribosomal (nucSSU) markers. All specimens collected in Great Britain were associated with members of Coccomyxa (including Pseudococcomyxa), but in the smaller sample of Ukrainian material, both Coccomyxa and Elliptochloris were found. This study extends the known range of fungal hosts for symbionts in the genus Coccomyxa, and supports earlier findings that a separate lineage of predominantly non-symbiotic Coccomyxa exists.

Type
Articles
Copyright
© British Lichen Society, 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

Ahmadjian, V. (1967) The Lichen Symbiosis. New York: John Wiley & Sons.Google Scholar
Andersen, H. L. & Ekman, S. (2005) Disintegration of the Micareaceae (lichenized Ascomycota): a molecular phylogeny based on mitochondrial rDNA sequences. Mycological Research 109: 2130.CrossRefGoogle ScholarPubMed
Arnold, A. E., Miądlikowska, J., Higgins, K. L., Sarvate, S. D., Gugger, P., Way, A., Hofstetter, V., Kauff, F. & Lutzoni, F. (2009) A phylogenetic estimation of trophic transition networks for Ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Systematic Biology 58: 283297.CrossRefGoogle ScholarPubMed
Beck, A. (1999) Photobiont inventory of a lichen community growing on heavy-metal-rich rock. Lichenologist 31: 501510.CrossRefGoogle Scholar
Beck, A., Friedl, T. & Rambold, G. (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytologist 139: 709720.CrossRefGoogle Scholar
Brunner, U. (1985) Ultrustructurelle und chemische Zellwanduntersuchungen an Flechten-phycobionten aus 7 Gattungen der Chlorophyceae (Chlorophytina) unter besonderer Berücksichtigung sporopollenin-ähnlicher Biopolymere. Doctoral dissertation, University of Zurich.Google Scholar
Casano, L. M., del Campo, E. M., Garcia-Breijo, F. J., Reig-Arminana, J., Gasulla, F., del Hoyo, A., Guera, A. & Barreno, E. (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus Competition? Environmental Microbiology 13: 806818.CrossRefGoogle ScholarPubMed
Coppins, B. J. (1983) A taxonomic study of the lichen genus Micarea in Europe. Bulletin of the British Museum (Natural History) 11: 18214.Google Scholar
Czarnota, P. (2007) The lichen genus Micarea (Lecanorales, Ascomycota) in Poland. Polish Botanical Studies 23: 1199.Google Scholar
Darienko, T., Gustavs, L., Mudimu, O., Menendez, C. R., Schumann, R., Karsten, U., Friedl, T. & Pröschold, T. (2010) Chloroidium, a common terrestrial coccoid green alga previously assigned to Chlorella (Trebouxiophyceae, Chlorophyta). European Journal of Phycology 45: 7995.CrossRefGoogle Scholar
Darienko, T., Gustavs, L., Eggert, A., Wolf, W. & Pröschold, T. (2015) Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS One 10: e0127838.CrossRefGoogle ScholarPubMed
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.CrossRefGoogle ScholarPubMed
del Campo, E. M., Catala, S., Gimeno, J., del Hoyo, A., Martinez-Alberola, F., Casano, L. M., Grube, M. & Barreno, E. (2013) The genetic structure of the cosmopolitan three-partner lichen Ramalina farinacea evidences the concerted diversification of symbionts. FEMS Microbiology Ecology 83: 310323.CrossRefGoogle ScholarPubMed
Ekman, S. & Svensson, M. (2014) Brianaria (Psoraceae), a new genus to accommodate the Micarea sylvicola group. Lichenologist 46: 285294.CrossRefGoogle Scholar
Eliáš, M., Neustupa, J. & Škaloud, P. (2008) Elliptochloris bilobata var. corticola var. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccal green alga. Biologia 63: 791798.CrossRefGoogle Scholar
Ettl, H. & Gärtner, G. (1995) Syllabus der Boden-, Luft-, und Flechtenalgen . Stuttgart, Jena, New York: Gustav Fischer.Google Scholar
Fernández-Martínez, M. A., de los Ríos, A., Sancho, L. G. & Pérez-Ortega, S. (2013) Diversity of endosymbiotic Nostoc in Gunnera magellanica (L) from Tierra del Fuego, Chile. Microbial Ecology 66: 335350.CrossRefGoogle Scholar
Fernández-Mendoza, F., Domaschke, S., García, M. A., Jordan, P., Martín, M. P. & Printzen, C. (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata . Molecular Ecology 20: 12081232.CrossRefGoogle ScholarPubMed
Grube, M. & Kroken, S. (2000) Molecular approaches and the concept of species and species complexes in lichenized fungi. Mycological Research 104: 12841294.CrossRefGoogle Scholar
Hafellner, J. (2004) Notes on Scoliciosporum . Fritschiana 49: 2941.Google Scholar
Honegger, R. (1999) Long-term in vitro preservation of the symbiotic phenotype of lichen-forming fungi and their photobionts: the impact of different modes of storage on their viability. In Abstracts of the International Conference on Lichen Conservation Biology (Licons), 30 August–3 September, 1999, Birmensdorf, Switzerland, p. 19.Google Scholar
Honegger, R. (2008) Morphogenesis. In Lichen Biology, 2nd Edition (T. H. Nash III, ed.): 6993. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Huelsenbeck, J. P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754755.CrossRefGoogle Scholar
Kroken, S. & Taylor, J. W. (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia . Bryologist 103: 645660.CrossRefGoogle Scholar
Kroken, S. & Taylor, J. W. (2001) A gene geneological approach to determine phylogenetic species boundaries in the lichenized fungus Letharia . Mycologia 93: 3853.CrossRefGoogle Scholar
Leavitt, S. D., Esslinger, T. L., Divakar, P. K. & Lumbsch, H. T. (2012) Miocene divergence, phenotypically cryptic lineages, and contrasting distribution patterns in common lichen-forming fungi (Ascomycota: Parmeliaceae). Biological Journal of the Linnean Society 107: 920937.CrossRefGoogle Scholar
Leavitt, S. D., Nelsen, M. P., Lumbsch, H. T., Johnson, L. A. & St. Clair, L. L. (2013) Symbiont flexibility in subalpine rock shield lichen communities in the Southwestern USA. Bryologist 116: 149161.CrossRefGoogle Scholar
Leliaert, F., Smith, D. R., Moreau, H., Herron, M. D., Verbruggen, H., Delwiche, C. F. & De Clerck, O. (2012) Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences 31: 146.CrossRefGoogle Scholar
Letsch, M. R. & Lewis, L. A. (2012) Chloroplast gene arrangement variation within a closely related group of green algae (Trebouxiophyceae, Chlorophyta). Molecular Phylogenetics and Evolution 64: 524532.CrossRefGoogle Scholar
Letsch, M. R., Muller-Parker, G., Friedl, T. & Lewis, L. (2009) Elliptochloris marina sp. nov. (Trebouxiophyceae, Chlorophyta), symbiotic green alga of the temperate Pacific sea anemones Anthopleura xanthogrammica and A. elegantissima (Anthozoa, Cnidaria). Journal of Phycology 45: 11271135.CrossRefGoogle Scholar
Lücking, R., Dal-Forno, M., Sikaroodi, M., Gillevet, P. M., Bungartz, F., Moncada, B., Yánez-Ayabaca, A., Chaves, J. L., Coca, L. F. & Lawrey, J. D. (2014) A single macrolichen constitutes hundreds of unrecognized species. Proceedings of the National Academy of Sciences of the United States of America 111: 1109111096.CrossRefGoogle ScholarPubMed
Maddison, W. P. & Maddison, D. R. (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org Google Scholar
Mansournia, M. R., Wu, B., Matsushita, N. & Hogetsu, T. (2012) Genotypic analysis of the foliose lichen Parmotrema tinctorum using microsatellite markers: association of mycobiont and photobiont, and their reproductive modes. Lichenologist 44: 419440.CrossRefGoogle Scholar
Mueller, U. G. (2012) Symbiont recruitment versus ant-symbiont co-evolution in the attine ant-microbe symbiosis. Current Opinion in Microbiology 15: 269277.CrossRefGoogle ScholarPubMed
Muggia, L., Baloch, E., Stabentheiner, E., Grube, M. & Wedin, M. (2010) Photobiont association and genetic diversity of the optionally lichenized fungus Schizoxylon albescens . FEMS Microbiology Ecology 75: 255272.CrossRefGoogle ScholarPubMed
Muggia, L., Pérez-Ortega, S., Kopun, T., Zellnig, G. & Grube, M. (2014) Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Annals of Botany 114: 463475.CrossRefGoogle Scholar
O’Brien, H. E. (2013 a) PhotobiontDiversity.org: a searchable database of photobiont sequences. PhotobiontDiversity.org. Retrieved from http://dx.doi.org/10.6084/m9.figshare.841758 CrossRefGoogle Scholar
O’Brien, H. E. (2013 b) Symbiotic Nostoc revisited. PhotobiontDiversity.org. Retrieved from http://dx.doi.org/10.6084/m9.figshare.775384 CrossRefGoogle Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Otálora, M. A. G., Martínez, I., O’Brien, H., Molina, M. C., Aragón, G. & Lutzoni, F. (2010) Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Molecular Phylogenetics and Evolution 56: 10891095.CrossRefGoogle Scholar
Park, C. H., Kim, K. M., Elvebakk, A., Kim, O.-S., Jeong, G. & Hong, S. G. (2014) Algal and fungal diversity in Antarctic lichens. Journal of Eukaryotic Microbiology 62: 196205.CrossRefGoogle ScholarPubMed
Piercey-Normore, M. D. (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii . New Phytologist 169: 331344.CrossRefGoogle ScholarPubMed
Piercey-Normore, M. D. & DePriest, P. T. (2001) Algal switching among lichen symbioses. American Journal of Botany 88: 14901498.CrossRefGoogle ScholarPubMed
Pröschold, T., Darienko, T., Silva, P. C., Reisser, W. & Krienitz, L. (2011) The systematics of Zoochlorella revisited employing an integrative approach. Environmental Microbiology 13: 350364.CrossRefGoogle ScholarPubMed
Rambaut, A., Suchard, M., Xie, D. & Drummond, A. (2014) Tracer v1.6. Available from http://beast.bio.ed.ac.uk/Tracer.Google Scholar
Ruprecht, U., Brunauer, G. & Printzen, C. (2012) Genetic diversity of photobionts in Antarctic lecideoid lichens from an ecological view point. Lichenologist 44: 661678.CrossRefGoogle Scholar
Sadowska-Des, A. D., Dal Grande, F., Lumbsch, H. T., Beck, A., Otte, J., Hur, J. S., Kim, J. A. & Schmitt, I. (2014) Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia . Molecular Phylogenetics and Evolution 76: 202210.CrossRefGoogle ScholarPubMed
Samarakoon, T., Wang, S. Y. & Alford, M. H. (2013) Enhancing PCR amplification of DNA from recalcitrant plant specimens using a trehalose-based additive. Applications in Plant Sciences 1: 1200236.CrossRefGoogle ScholarPubMed
Sherwood, A. R., Garbary, D. J. & Sheath, R. G. (2000) Assessing the phylogenetic position of the Prasiolales (Chlorophyta) using rbcL and 18S rRNA gene sequence data. Phycologia 39: 139146.CrossRefGoogle Scholar
Škaloud, P. & Peksa, O. (2010) Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Molecular Phylogenetics and Evolution 54: 3646.CrossRefGoogle Scholar
Smith, D. C. & Douglas, A. (1987) The Biology of Symbiosis. London: Edward Arnold.Google Scholar
Thompson, J. N. (2009) The coevolving web of life. American Naturalist 173: 125140.CrossRefGoogle ScholarPubMed
Thüs, H., Muggia, L., Perez-Ortega, S., Favero-Longo, S. E., Joneson, S., O’Brien, H., Nelsen, M. P., Duque-Thues, R., Grube, M., Friedl, T., et al. (2011) Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). European Journal of Phycology 46: 399415.CrossRefGoogle Scholar
Tremouillaux-Guiller, J. & Huss, V. A. R. (2007) A cryptic intracellular green alga in Ginkgo biloba: ribosomal DNA markers reveal worldwide distribution. Planta 226: 553557.CrossRefGoogle ScholarPubMed
Tsarenko, P. M. (2011) Trebouxiophyceae . In Algae of Ukraine: Diversity, Nomenclature, Taxonomy, Ecology and Geography. Volume 3: Chlorophyta (P. M. Tsarenko, S. P. Wasser & E. Nevo, eds): 61108. Ruggell: A.R.A. Gantner Verlag K.-G.Google Scholar
Tschermak-Woess, E. (1985) Elliptochloris bilobata - not a rare phycobiont. Herzogia 7: 105116.Google Scholar
Voytsekhovich, A., Dymytrova, L. & Nadyeina, O. (2011 a) Photobiont composition of some taxa of the genera Micarea and Placynthiella (Lecanoromycetes, lichenized Ascomycota) from Ukraine. Folia Cryptogamica Estonica 48: 135148.Google Scholar
Voytsekhovich, A., Mikhailyuk, T. I. & Darienko, T. (2011 b) Lichen photobionts 1: biodiversity, ecophysiology and co-evolution with the mycobiont. Algologia 21: 326.Google Scholar
Werth, S. (2012) Fungal-algal interactions in Ramalina menziesii and its associated epiphytic lichen community. Lichenologist 44: 543560.CrossRefGoogle Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications (M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White, eds): 315322. New York: Academic Press.Google Scholar
Yahr, R., Vilgalys, R. & DePriest, P. T. (2006) Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytologist 171: 847860.CrossRefGoogle ScholarPubMed
Yahr, R., Coppins, B. J. & Ellis, C. J. (2011) Preserved epiphytes as an archaeological resource in pre-industrial vernacular buildings. Journal of Archaeological Science 38: 11911198.CrossRefGoogle Scholar
Zoller, S. & Lutzoni, F. (2003) Slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa . Molecular Phylogenetics and Evolution 29: 629640.CrossRefGoogle ScholarPubMed

Yahr supplementary material

Appendix S1

File 20 KB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 12
Total number of PDF views: 132 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Molecular and morphological diversity in photobionts associated with Micarea s. str. (Lecanorales, Ascomycota)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Molecular and morphological diversity in photobionts associated with Micarea s. str. (Lecanorales, Ascomycota)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Molecular and morphological diversity in photobionts associated with Micarea s. str. (Lecanorales, Ascomycota)
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *