Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T17:08:36.721Z Has data issue: false hasContentIssue false

Ecological specialization of lichen congeners with a strong link to Mediterranean-type climate: a case study of the genus Solenopsora in the Apennine Peninsula

Published online by Cambridge University Press:  20 February 2019

Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23Bratislava, Slovakia. Email:
Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23Bratislava, Slovakia. Email:
Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Giorgieri 10, 34123Trieste, Italy
Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Mattioli 4, 53100Siena, Italy
Silvana MUNZI
Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Bloco C2, 6º Piso, sala 2·6·13, 1749-016 Lisboa, Portugal
Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Giorgieri 10, 34123Trieste, Italy
Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Giorgieri 10, 34123Trieste, Italy


An ecological biogeographical perspective provides an understanding of the factors that shape the geographical distribution of organisms, their biodiversity and ecological speciation. Focusing on members of the lichen genus Solenopsora, which are strongly linked to a Mediterranean-type climate, we aimed to depict their environmental niches in the Apennine Peninsula. This area represents their ecological optima, as well as the biogeographical centre of distribution. On the basis of occurrences of Solenopsora congeners, we identified the key ecological factors that shape their environmental niches. Applying an ensemble approach, which merges the results of Random Forest, GLM and MaxEnt algorithms, suitability maps were developed. These are mainly influenced by geological substratum, temperature and precipitation. Occurrence of Solenopsora taxa seems to be mainly governed by low variability in diurnal temperature and tolerance to dryness, with precipitation in the range of 0–20 mm in the driest month and a minimum temperature of >5 °C in the coldest month. The sensitivity to diurnal temperature, an important indicator for climate change, suggests that the taxa confined to Mediterranean bioclimatic types (i.e. Solenopsora grisea, S. marina, S. olivacea subsp. olbiensis and S. olivacea subsp. olivacea) might be good indicators of climatic stability. The geological substratum was a strong limiting factor and separated the taxa into three groups: those growing on calcareous, siliceous and ultramafic substrata. Limited co-occurrence of species confined to one of the three categories suggests that the level of niche differentiation is on a microhabitat level. Accounting for ecological requirements, the taxa differ in their tolerance to sub-optimal conditions. The ecological niches of a sister subspecies pair with different reproduction strategies, fertile S. olivacea subsp. olivacea and sorediate S. olivacea subsp. olbiensis, overlap strongly. However, habitat suitability for S. olivacea subsp. olbiensis is greater in areas with higher precipitation in the driest month, whereas S. olivacea subsp. olivacea is more restricted to warmer and drier areas. We also report new regional records for Italy and the first records of S. cesatii in Serbia and Ukraine, and of S. liparina in Serbia.

© British Lichen Society, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 12231232.Google Scholar
Anacker, B. L. & Strauss, S. Y. (2014) The geography and ecology of plant speciation: range overlap and niche divergence in sister species. Proceedings of the Royal Society of London Series B 281: 20132980.Google Scholar
Araújo, M. B. & New, M. (2007) Ensemble forecasting of species distribution. Trends in Ecology and Evolution 22: 4247.Google Scholar
Attorre, F., De Sanctis, M., Farcomeni, A., Guillet, A., Scepi, E., Vitale, M., Pella, F. & Fasola, M. (2013) The use of spatial ecological modelling as a tool for improving the assessment of geographic range size of threatened species. Journal for Nature Conservation 21: 4855.Google Scholar
Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. (2012) Selecting pseudoabsences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3: 327338.Google Scholar
Bendiksby, M., Mazzoni, S., Jørgensen, M. H., Halvorsen, R. & Holien, H. (2014) Combining genetic analyses of archived specimens with distribution modelling to explain the anomalous distribution of the rare lichen Staurolemma omphalarioides: long-distance dispersal or vicariance? Journal of Biogeography 41: 20202031.Google Scholar
Boakes, E. H., McGowan, P. J. K., Fuller, R. A., Chang-qing, D., Clark, N. E., O’Connor, K. & Mace, G. M. (2010) Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biology 8: e1000385.Google Scholar
Braganza, K., Karoly, D. J. & Arblaster, J. M. (2004) Diurnal temperature range as an index of global climate change during the twentieth century. Geophysical Research Letters 31: L13217.Google Scholar
Cranfield, R. J. (2004) Lichen census of Western Australia. Nuytsia 15: 193220.Google Scholar
Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J. & Lawler, J. J. (2007) Random forests for classification in ecology. Ecology 88: 27832792.Google Scholar
Devictor, V., Clavel, J., Julliard, R., Lavergne, S., Mouillot, D., Thuiller, W., Venail, P., Villéger, S. & Mouquet, N. (2010) Defining and measuring ecological specialization. Journal of Applied Ecology 47: 1525.Google Scholar
Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., et al. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129151.Google Scholar
Elix, J. A. (2009) Additional lichen records from Australia 71. Australian Lichenology 65: 154.Google Scholar
Ellis, C. J., Coppins, B. J., Dawson, T. P. & Seaward, M. R. D. (2007) Response of British lichens to climate change scenarios: trends and uncertainties in the projected impact for contrasting biogeographic groups. Biological Conservation 140: 217235.Google Scholar
Fačkovcová, Z., Senko, D., Svitok, M. & Guttová, A. (2017) Ecological niche conservatism shapes the distributions of lichens: geographical segregation does not reflect ecological differentiation. Preslia 89: 6385.Google Scholar
Fady-Welterlen, B. (2005) Is there really more biodiversity in Mediterranean forest ecosystems? Taxon 54: 905910.Google Scholar
Favero-Longo, S. E., Matteucci, E., Giordani, P., Paukov, A. G. & Rajakaruna, N. (2018) Diversity and functional traits of lichens in ultramafic areas: a literature-based worldwide analysis integrated by field data at the regional scale. Ecological Research 33: 593608.Google Scholar
Galloway, D. J. (2008) Lichen biogeography. In Lichen Biology (T. H. Nash III, ed.): 315335. Cambridge: Cambridge University Press.Google Scholar
Gaston, K. J. (1996) Species-range-size distributions: patterns, mechanisms and implications. Tree 11: 197201.Google Scholar
Gilbert, O. L., Purvis, O. W. & James, P. W. (2009) Solenopsora. In The Lichens of Great Britain and Ireland (C. W. Smith, A. Aptroot, B. J. Coppins, A. Fletcher, O. L. Gilbert, P. W. James & P. A. Wolseley, eds): 842844. London: British Lichen Society.Google Scholar
Guiot, J. & Cramer, W. (2016) Climate change: the 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. Science 354: 465468.Google Scholar
Guisan, A., Broennimann, O., Engler, R., Vust, M., Yoccoz, N. G., Lehmann, A. & Zimmermann, N. E. (2006) Using niche-based models to improve the sampling of rare species. Conservation Biology 20: 501511.Google Scholar
Guttová, A. & Lőkös, L. (2011) Leptogium ferax (lichen-forming fungi, Collemataceae) new to Hungary. Acta Botanica Hungarica 53: 321324.Google Scholar
Guttová, A., Zozomová-Lihová, J., Timdal, E., Kučera, J., Slovák, M., Piknová, K. & Paoli, L. (2014) First insights into genetic diversity and relationships of European taxa of the genus Solenopsora (Catillariaceae, Ascomycota) with implications on their delimitation. Botanical Journal of the Linnean Society 176: 203223.Google Scholar
Guttová, A., Vondrák, J., Schultz, M., El Mokni, R. (2015) Lichens collected during the 12th “Iter Mediterraneum” in Tunisia, 24 March – 4 April 2014. Bocconea 27: 6977.Google Scholar
Harrell, F. E. Jr, with contributions from Charles Dupont and many others. (2016) Package “Hmisc”: Harrell Miscellaneous. R package version 4.0-2. [WWW document] URL Scholar
Heads, M. (2015) The relationship between biogeography and ecology: envelopes, models, predictions. Biological Journal of the Linnean Society 115: 456468.Google Scholar
Hijmans, R. J. & van Etten, J. (2012) Geographic analysis and modeling with raster data. R package version 2.0-12. [WWW document] URL Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 19651978.Google Scholar
Incerti, G. & Nimis, P. L. (2006) Biogeographical outline of epiphytic lichens in a Mediterranean area: Calabria (S Italy). Lichenologist 38: 355371.Google Scholar
Kassambara, A. & Mundt, F. (2017) factoextra: extract and visualize the results of multivariate data analyses. [WWW document] URL Scholar
Komposch, H. & Breuss, O. (2013) Erstnachweise lichenisierter und nich-lichenisierter Pilze für Kärnten, die Steiermark, Niederösterreich und Österreich. Karinthia II 203/123: 495506.Google Scholar
, S., Josse, J. & Husson, F. (2008) FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 25: 118.Google Scholar
Leavitt, S. D. & Lumbsch, H. T. (2016) Ecological biogeography of lichen-forming fungi. In Environmental and Microbial Relationships, The Mycota IV, 3rd Edition (I. S. Druzhinina & C. P. Kubicek, eds): 15–37. Cham, Switzerland: Springer International Publishing.Google Scholar
Lendemer, J. C. & Hodkinson, B. P. (2013) A radical shift in the taxonomy of Lepraria s.l.: molecular and morphological studies shed new light on the evolution of sexuality and lichen growth form diversification. Mycologia 105: 9941018.Google Scholar
Martellos, S., Attore, F., Farcomeni, A., Francesconi, F., Pittao, E. & Tretiach, M. (2014) Species distribution models backing taxa delimitation: the case of the lichen Squamarina cartilaginea in Italy. Flora 209: 698703.Google Scholar
McCarthy, P. M. (2013) Checklist of the Lichens of Australia and its Island Territories. Australian Biological Resources Study, Canberra. Version 29 June 2013. [WWW document] URL Scholar
McCarthy, P. & Elix, J. A. (2017) Five new lichen species (Ascomycota) and a new record from southern New South Wales, Australia. Telopea 20: 335353.Google Scholar
Mered’a, P., Kučera, J., Marhold, K., Senko, D., Slovák, M., Svitok, M., Šingliarová, B. & Hodálová, I. (2016) Ecological niche differentiation between tetra- and octoploids of Jacobaea vulgaris . Preslia 88: 113136.Google Scholar
Merow, C., Smith, M. J. & Silander, J. A. (2013) A practical guide for modelling species distributions: what it does, and why inputs and settings matter. Ecography 36: 10581069.Google Scholar
Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., Gaya, E., Hafellner, J., Hofstetter, V., Gueidan, C., et al. (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution 79: 132168.Google Scholar
Monge-Nájera, J. (2008) Ecological biogeography: a review with emphasis on conservation and the neutral model. Gayana 72: 102112.Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853858.Google Scholar
Nieto Feliner, G. (2014) Patterns and processes in plant phylogeography in the Mediterranean Basin. A review. Perspectives in Plant Ecology, Evolution and Systematics 16: 265278.Google Scholar
Nimis, P. L. (2016) The Lichens of Italy. A Second Annotated Catalogue. Trieste: EUT (Edizioni Università di Trieste).Google Scholar
Nimis, P. L. & Martellos, S. (2017) ITALIC 5.0, the information system on Italian lichens. Department of Life Sciences, University of Trieste. [WWW document] URL Scholar
Otte, V., Esslinger, T. L. & Litterski, B. (2002) Biogeographical research on European species of the lichen genus Physconia . Journal of Biogeography 29: 11251141.Google Scholar
Peralta-Hernandez, A. R., Balling, R. C. Jr. & Barba-Martinez, L. R. (2009) Analysis of near-surface diurnal temperature variations and trends in southern Mexico. International Journal of Climatology 29: 205209.Google Scholar
Petit, R. J., Hampe, A. & Cheddadi, R. (2005) Climate changes and tree phylogeography in the Mediterranean. Taxon 54: 877885.Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. (2006) Maximum entropy modelling of species geographic distributions. Ecological Modelling 190: 231259.Google Scholar
Planas, E., Saupe, E. E., Lima-Ribeiro, M. S., Peterson, A. T. & Ribera, C. (2014) Ecological niche and phylogeography elucidate complex biogeographic patterns in Loxosceles rufescens (Araneae, Sicariidae) in the Mediterranean Basin. BMC Evolutionary Biology 14: 195.Google Scholar
Poelt, J. & Krüger, U. (1970) Die Verbreitungsverhältnisse der Flechtengattung Squamarina in Europa. Feddes Repertorium 81: 187201.Google Scholar
QGIS Development Team (2016) QGIS geographic information system, version “Las Palmas”. Open Source Geospatial Foundation. [WWW document] URL Scholar
Qu, M., Wan, J. & Hao, X. (2014) Analysis of diurnal air temperature range change in the continental United States. Weather and Climate Extremes 4: 8695.Google Scholar
R Core Team (2016) R: A language and environment for statistical computing. Version 3.3.3. R Foundation for Statistical Computing, Vienna, Austria. [WWW document] URL Scholar
Rivas-Martínez, S., Rivas Sáenz, S. & Penas, A. (2011) Worldwide bioclimatic classification system. Global Geobotany 1: 1634 + 4 Maps.Google Scholar
Rödder, D. & Engler, J. O. (2011) Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks. Global Ecology and Biogeography 20: 915927.Google Scholar
Rubio-Salcedo, M., Psomas, A., Prieto, M., Zimmermann, N. E. & Martínez, I. (2017) Case study of the implications of climate change for lichen diversity and distributions. Biodiversity and Conservation 26: 11211141.Google Scholar
Ryan, B. D. & Timdal, E. (2002) Solenopsora . In Lichen Flora of the Greater Sonoran Desert Region, Vol. 1. (T. H. Nash III, B. D. Ryan, C. Gries & F. Bungartz, eds): 462465. Tempe, Arizona: Lichens Unlimited, Arizona State University.Google Scholar
Sammy, N. (1989) Checklist of western Australian lichens. Mycotaxon 35: 417428.Google Scholar
Santiso, X., Lopez, L., Retuerto, R. & Barreiro, R. (2016) Phylogeography of a widespread species: pre-glacial vicariance, refugia, occasional blocking straits and long-distance migrations. AoB PLANTS 8: plw003.Google Scholar
Schoener, T. W. (1968) The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49: 704726.Google Scholar
Serra-Diaz, J. M., Ninyerola, M. & Lloret, F. (2012) Coexistence of Abies alba (Mill.) – Fagus sylvatica (L.) and climate change impact in the Iberian Peninsula: a climatic-niche perspective approach. Flora 207: 1018.Google Scholar
Thompson, J. D., Lavergne, S., Affre, L., Gaudeul, M. & Debussche, M. (2005) Ecological differentiation of Mediterranean endemic plants. Taxon 54: 967976.Google Scholar
Thuiller, W., Lafourcade, B., Engler, R. & Araùjo, M. B. (2009) BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32: 369373.Google Scholar
Thuiller, W., Georges, D., Engler, R. & Breiner, F. (2016) Biomod2: ensemble platform for species distribution modeling. R package version 3.3-7. [WWW document] URL Scholar
van der Wal, J., Falconi, L., Januchowski, S., Shoo, L. & Storlie, C. (2014) SDMTools – Species distribution modelling tools: tools for processing data associated with species distribution modelling exercises. R package version 1.1-221. [WWW document] URL Scholar
Warren, D. L., Glor, R. E. & Turelli, M. (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62: 28682883.Google Scholar
Wiersma, Y. F. & Skinner, R. (2011) Predictive distribution model for the boreal felt lichen Erioderma pedicellatum in Newfoundland, Canada. Endangered Species Research 15: 115127.Google Scholar
Williams, J. N., Seo, C., Thorne, J., Nelson, J. K., Erwin, S., O’Brien, J. M. & Schwartz, M. W. (2009) Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions 15: 565576.Google Scholar
Youssef, S., Baumel, A., Véla, E., Juin, M., Dumas, E., Affre, L. & Tatoni, T. (2011) Factors underlying the narrow distribution of the Mediterranean annual plant Arenaria provincialis (Caryophyllaceae). Folia Geobotanica 46: 327350.Google Scholar
Supplementary material: File

Guttová et al. supplementary material

Guttová et al. supplementary material 1

Download Guttová et al. supplementary material(File)
File 56.7 MB
Supplementary material: File

Guttová et al. supplementary material

Guttová et al. supplementary material 2

Download Guttová et al. supplementary material(File)
File 18.9 KB