Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T11:20:13.489Z Has data issue: false hasContentIssue false

Changes in functional traits of the terricolous lichen Peltigera aphthosa across a retrogressive boreal forest chronosequence

Published online by Cambridge University Press:  19 May 2015

Johan Asplund
Affiliation:
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden. Email: johan.asplund@nmbu.no Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway.
David A. Wardle
Affiliation:
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden. Email: johan.asplund@nmbu.no

Abstract

Changes in the functional traits of the terricolous lichen Peltigera aphthosa with declining soil fertility during ecosystem retrogression were investigated. A well-documented retrogressive chronosequence of 28 forested islands in northern Sweden that differ greatly in fire history and which spans 5000 years was used. The abundance of cephalodia increased, indicative of higher N2-fixation rates resulting from lower N availability. Thallus δ13C values increased with ageing soils, in line with declining δ13C values of the humus substratum along this gradient. However, δ13C values were also driven by variation in factors that were at least partly independent of soil ageing. As such, δ13C values were mostly related to specific thallus mass (STM), possibly because a higher STM gives a thicker cortical layer and thus greater resistance to CO2 diffusion, leading to higher δ13C values. STM and other measured traits (i.e. thallus N, P, secondary compounds and water-holding capacity) were unresponsive to the gradient, despite these traits being very responsive to the same gradient in epiphytic lichen species.

Type
Articles
Copyright
© British Lichen Society, 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aerts, R. Chapin, F. S. (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30: 167.Google Scholar
Albert, C. H., Thuiller, W., Yoccoz, N. G., Douzet, R., Aubert, S. Lavorel, S. (2010) A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology 24: 11921201.Google Scholar
Asplund, J. Wardle, D. A. (2013) The impact of secondary compounds and functional characteristics on lichen palatability and decomposition. Journal of Ecology 101: 689700.Google Scholar
Asplund, J. Wardle, D. A. (2014) Within-species variability is the main driver of community-level responses of traits of epiphytes across a long-term chronosequence. Functional Ecology 28: 15131522.Google Scholar
Asplund, J., Solhaug, K. A. Gauslaa, Y. (2010) Optimal defense: snails avoid reproductive parts of the lichen Lobaria scrobiculata due to internal defense allocation. Ecology 91: 31003105.Google Scholar
Asplund, J., Sandling, A. Wardle, D. A. (2012) Lichen specific thallus mass and secondary compounds change across a retrogressive fire-driven chronosequence. PLoS ONE 7: e49081.Google Scholar
Bansal, S., Nilsson, M.-C. Wardle, D. A. (2012) Response of photosynthetic carbon gain to ecosystem retrogression of vascular plants and mosses in the boreal forest. Oecologia 169: 661672.Google Scholar
Beck, A. Mayr, C. (2012) Nitrogen and carbon isotope variability in the green-algal lichen Xanthoria parietina and their implications on mycobiont-photobiont interactions. Ecology and Evolution 2: 31323144.Google Scholar
Blakemore, L. C., Searle, P. L. Daly, B. K. (1987) Methods for chemical analysis of soils. New Zealand Soil Bureau Scientific Report 80: 1103.Google Scholar
Bolnick, D. I., Amarasekare, P., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M., Rudolf, V. H. W., Schreiber, S. J., Urban, M. C. Vasseur, D. A. (2011) Why intraspecific trait variation matters in community ecology. Trends in Ecology and Evolution 26: 183192.Google Scholar
Brenner, D. L., Amundson, R., Baisden, W. T., Kendall, C. Harden, J. (2001) Soil N and 15N variation with time in a California annual grassland ecosystem. Geochimica et Cosmochimica Acta 65: 41714186.Google Scholar
Broadmeadow, M. S. J., Griffiths, H., Maxwell, C. Borland, A. M. (1992) The carbon isotope ratio of plant organic material reflects temporal and spatial variations in CO2 within tropical forest formations in Trinidad. Oecologia 89: 435441.Google Scholar
Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., Stenlid, J., Finlay, R. D., Wardle, D. A. Lindahl, B. D. (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339: 16151618.Google Scholar
Colesie, C., Scheu, S., Green, T. G. A., Weber, B., Wirth, R. Büdel, B. (2012) The advantage of growing on moss: facilitative effects on photosynthetic performance and growth in the cyanobacterial lichen Peltigera rufescens . Oecologia 169: 599607.Google Scholar
Colesie, C., Green, T. G. A., Haferkamp, I. Büdel, B. (2014) Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts. The ISME Journal 8: 21042115.CrossRefGoogle ScholarPubMed
Cordell, S., Goldstein, G., Meinzer, F. C. Vitousek, P. M. (2001) Regulation of leaf life-span and nutrient-use efficiency of Metrosideros polymorpha trees at two extremes of a long chronosequence in Hawaii. Oecologia 127: 198206.Google Scholar
Crittenden, P. D., Kałucka, I. Oliver, E. (1994) Does nitrogen supply limit the growth of lichens? Cryptogamic Botany 4: 143155.Google Scholar
Crutsinger, G. M., Sanders, N. J., Albrectsen, B. R., Abreu, I. N. Wardle, D. A. (2008) Ecosystem retrogression leads to increased insect abundance and herbivory across an island chronosequence. Functional Ecology 22: 816823.Google Scholar
Dahlman, L. Palmqvist, K. (2003) Growth in two foliose tripartite lichens, Nephroma arcticum and Peltigera aphthosa: empirical modelling of external vs internal factors. Functional Ecology 17: 821831.Google Scholar
Farquhar, G. D., Ehleringer, J. R. Hubick, K. T. (1989) Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40: 503537.Google Scholar
Gauslaa, Y. Coxson, D. (2011) Interspecific and intraspecific variations in water storage in epiphytic old forest foliose lichens. Botany 89: 787798.Google Scholar
Grime, J. P. (1979) Plant Strategies and Vegetation Processes. Chichester: John Wiley & Sons.Google Scholar
Grime, J. P. (2001) Plant Strategies, Vegetation Processes, and Ecosystem Properties. Chichester: John Wiley & Sons.Google Scholar
Hällbom, L. Bergman, B. (1983) Effects of inorganic nitrogen on C2H2 reduction and CO2 exchange in the Peltigera praetextata-Nostoc and Peltigera aphthosa-Coccomyxa-Nostoc symbioses. Planta 157: 441445.Google Scholar
Hyodo, F. Wardle, D. A. (2009) Effect of ecosystem retrogression on stable nitrogen and carbon isotopes of plants, soils and consumer organisms in boreal forest islands. Rapid Communications in Mass Spectrometry 23: 18921898.CrossRefGoogle ScholarPubMed
Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. Freschet, G. T. (2013) Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Functional Ecology 27: 12541261.Google Scholar
Knops, J. M. H., Nash, T. H. III, Schlesinger, W. H. (1996) The influence of epiphytic lichens on the nutrient cycling of an oak woodland. Ecological Monographs 66: 159179.Google Scholar
Kumordzi, B. B., Nilsson, M.-C., Gundale, M. J. Wardle, D. A. (2014) Changes in local-scale intraspecific trait variability of dominant species across contrasting island ecosystems. Ecosphere 5: art26.Google Scholar
Kurina, L. M. Vitousek, P. M. (1999) Controls over the accumulation and decline of a nitrogen-fixing lichen, Stereocaulon vulcani, on young Hawaiian lava flows. Journal of Ecology 87: 784799.Google Scholar
Lagerström, A., Nilsson, M. C., Zackrisson, O. Wardle, D. A. (2007) Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression. Functional Ecology 21: 10271033.Google Scholar
Lagerström, A., Nilsson, M.-C. Wardle, D. (2013) Decoupled responses of tree and shrub leaf and litter trait values to ecosystem retrogression across an island area gradient. Plant and Soil 367: 183197.Google Scholar
Lakatos, M., Hartard, B. Máguas, C. (2007) The stable isotopes δ13C and δ18O of lichens can be used as tracers of microenvironmental carbon and water sources. In Stable Isotopes as Indicators of Ecological Change (T. Dawson & R. Siegwolf, eds): 7792. Amsterdam: Academic Press.Google Scholar
Lang, S. I., Cornelissen, J. H. C., Klahn, T., Van Logtestijn, R. S. P., Broekman, R., Schweikert, W. Aerts, R. (2009) An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. Journal of Ecology 97: 886900.Google Scholar
Lange, O. L. Green, T. G. A. (1996) High thallus water content severely limits photosynthetic carbon gain of central European epilithic lichens under natural conditions. Oecologia 108: 1320.Google Scholar
Lange, O. L., Green, T. G. A. Ziegler, H. (1988) Water status related photosynthesis and carbon isotope discrimination in species of the lichen genus Pseudocyphellaria with green or blue-green photobionts and in photosymbiodemes. Oecologia 75: 494501.Google Scholar
Máguas, C. Brugnoli, E. (1996) Spatial variation in carbon isotope discrimination across the thalli of several lichen species. Plant, Cell and Environment 19: 437446.Google Scholar
Máguas, C., Griffiths, H. Broadmeadow, M. S. J. (1995) Gas exchange and carbon isotope discrimination in lichens: evidence for interactions between CO2-concentrating mechanisms and diffusion limitation. Planta 196: 95102.Google Scholar
Messier, J., McGill, B. J. Lechowicz, M. J. (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters 13: 838848.Google Scholar
Nadelhoffer, K. J. Fry, B. (1994) Nitrogen isotope studies in forest ecosystems. In Stable Isotopes in Ecology and Environmental Science (K. Lajtha & R. H. Michener, eds): 2244 . Oxford: Blackwell Scientific Publications.Google Scholar
Nash, T. H. III, (2008) Nitrogen, its metabolism and potential contribution to ecosystems. In Lichen Biology (T. H. Nash III, ed.): 216233. Cambridge: Cambridge University Press.Google Scholar
Nybakken, L., Asplund, J., Solhaug, K. A. Gauslaa, Y. (2007) Forest successional stage affects the cortical secondary chemistry of three old forest lichens. Journal of Chemical Ecology 33: 16071618.Google Scholar
Odum, E. (1969) The strategy of ecosystem development. Science 164: 262270.Google Scholar
Palmqvist, K. (2000) Carbon economy in lichens. New Phytologist 148: 1136.Google Scholar
Peltzer, D. A., Wardle, D. A., Allison, V. J., Baisden, W. T., Bardgett, R. D., Chadwick, O. A., Condron, L. M., Parfitt, R. L., Porder, S., Richardson, S. J., et al. (2010) Understanding ecosystem retrogression. Ecological Monographs 80: 509529.Google Scholar
Raggio, J., Green, T. G. A., Crittenden, P. D., Pintado, A., Vivas, M., Pérez-Ortega, S., Ríos, A. Sancho, L. G. (2012) Comparative ecophysiology of three Placopsis species, pioneer lichens in recently exposed Chilean glacial forelands. Symbiosis 56: 5566.Google Scholar
Rai, A. N., Rowell, P. Stewart, W. D. P. (1981) Nitrogenase activity and dark CO2 fixation in the lichen Peltigera aphthosa Willd. Planta 151: 256264.Google Scholar
Richardson, S. J., Peltzer, D. A., Allen, R. B. McGlone, M. S. (2005) Resorption proficiency along a chronosequence: responses among communities and within species. Ecology 86: 2025.Google Scholar
Snelgar, W. P. Green, T. G. A. (1981) Ecologically-linked variation in morphology, acetylene reduction, and water relations in Pseudocyphellaria dissimilis . New Phytologist 87: 403411.Google Scholar
Solhaug, K. A., Lind, M., Nybakken, L. Gauslaa, Y. (2009) Possible functional roles of cortical depsides and medullary depsidones in the foliose lichen Hypogymnia physodes . Flora 204: 4048.Google Scholar
Tarnawski, M. G., Green, T. G. A., Buedel, B., Meyer, A., Zellner, H. Lange, O. L. (1994) Diel changes of atmospheric CO2 concentration within, and above, cryptogam stands in a New Zealand temperate rainforest. New Zealand Journal of Botany 32: 329336.Google Scholar
Walker, J., Thompson, C. H. Jehne, W. (1983) Soil weathering stage, vegetation succession, and canopy dieback. Pacific Science 37: 471481.Google Scholar
Walker, L. R. del Moral, R. (2003) Primary Succession and Ecosystem Rehabilitation. Cambridge: Cambridge University Press.Google Scholar
Wardle, D. A. Zackrisson, O. (2005) Effects of species and functional group loss on island ecosystem properties. Nature 435: 806810.Google Scholar
Wardle, D. A., Zackrisson, O., Hörnberg, G. Gallet, C. (1997) The influence of island area on ecosystem properties. Science 277: 12961299.Google Scholar
Wardle, D. A., Hörnberg, G., Zackrisson, O., Kalela-Brundin, M. Coomes, D. A. (2003) Long-term effects of wildfire on ecosystem properties across an island area gradient. Science 300: 972975.Google Scholar
Wardle, D. A., Walker, L. R. Bardgett, R. D. (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305: 509513.Google Scholar
Wardle, D. A., Jonsson, M., Bansal, S., Bardgett, R. D., Gundale, M. J. Metcalfe, D. B. (2012) Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. Journal of Ecology 100: 1630.Google Scholar