Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T11:52:33.331Z Has data issue: false hasContentIssue false

Third excimer continua in neon and argon

Published online by Cambridge University Press:  09 March 2009

W. Krötz
Affiliation:
Technische Universität München, Fakultät für Physik E12, James-Franck-Str. 1, D-85747 Garching, Germany
A. Ulrich
Affiliation:
Technische Universität München, Fakultät für Physik E12, James-Franck-Str. 1, D-85747 Garching, Germany
B. Busch
Affiliation:
Technische Universität München, Fakultät für Physik E12, James-Franck-Str. 1, D-85747 Garching, Germany
G. Ribitzki
Affiliation:
Technische Universität München, Fakultät für Physik E12, James-Franck-Str. 1, D-85747 Garching, Germany
J. Wieser
Affiliation:
Technische Universität München, Fakultät für Physik E12, James-Franck-Str. 1, D-85747 Garching, Germany

Abstract

The emission of the third continuum of argon in the wavelength range between 175 and 250 nm and the vacuum ultraviolet emission of neon (λ < 100 nm) has been studied by timeresolved optical spectroscopy. The target gases at pressures between 2 and 100 kPa were excited with a pulsed beam of 100 MeV 32S9+ ions from the Munich Tandem van de Graaf accelerator. Wavelength spectra recorded in different time windows after the 2-ns beam pulses show that two different components contribute to the third continuum of argon. A radiative lifetime of 5.71 ± 0.08 ns for the Ar22+ molecule and a rate coefficient k3 = (1.46 ± 0.12) x 10-30 cm6/s for the reaction Ar2+ + 2Ar → Ar22+ + Ar were obtained from the pressure dependence of time spectra at a wavelength of 190 nm. From time- and pressure-dependent studies of the third continuum emission of neon at a wavelength of 99 nm, rate coefficients k2 = (3.6 ± 0.3) x 10-13 cm3/s for the bimolecular reaction Ne2+ + Ne→ 2Ne+ and k3 = (2.84 ± 0.09) X 10-31 cm6/s for the termolecular reaction Ne2+ + 2Ne → Ne22+ + Ne were determined.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Birot, A. et al. 1975 J. Chem. Phys. 63, 1469.CrossRefGoogle Scholar
Cachoncinlle, C. et al. 1990 Opt. Comm. 79, 41.CrossRefGoogle Scholar
Griegel, T. et al. 1990 J. Chem. Phys. 93, 4581.CrossRefGoogle Scholar
Krötz, W. et al. 1989 Appl. Phys. Lett. 55, 2265.CrossRefGoogle Scholar
Krötz, W. et al. 1991 Phys. Rev. A43, 6089.CrossRefGoogle Scholar
Langhoff, H. 1988 Opt. Comm.. 68, 31.CrossRefGoogle Scholar
Millet, P. et al. 1978 J. Chem. Phys. 69, 92.CrossRefGoogle Scholar
Möller, T. et al. 1985 Chem. Phys. Lett. 117, 301.CrossRefGoogle Scholar