Skip to main content Accessibility help
×
Home

Role of physico-chemical environment on gastropod assemblages at hydrothermal vents on the East Pacific Rise (13°N/EPR)

  • Marjolaine Matabos (a1), Nadine Le Bris (a2), Sophie Pendlebury (a3) and Eric Thiébaut (a4)

Abstract

Deep-sea hydrothermal vents display extreme and highly variable environmental conditions that are expected to be among the most important factors structuring associated benthic populations and communities. We tested this assumption, focusing on the distribution of gastropods, as well as on the demographic population structure and reproductive biology of one dominant gastropod species in zones characterized by alvinellid polychaetes and vestimentiferan tubeworms. A total of 14 biological samples from both types of habitats were collected at three sites on the East Pacific Rise 13°N vent field in May 2002. At all vents except one, the physico-chemical environment was described in two steps: (1) pH, total sulphide and reduced iron concentrations have been measured in situ in Alvinella habitats and correlations to temperature were assessed at the scale of each sampled vent; and (2) assuming the consistency of these relationships within a single edifice, ranges of physico-chemical factors were estimated for each biological sample from the corresponding fine scale temperature measurements. A total of 11 gastropod species were identified from all samples and 2 main faunal assemblages were distinguished: one dominated by Lepetodrilus elevatus in the alvinellid zone as well as in the vestimentiferan zone, and one dominated by the peltospirids Nodopelta heminoda, N. subnoda and Peltospira operculata confined to the alvinellid zone. Peltospirid gastropods were dominant over lepetodrilid gastropods in the more acidic, sulphide-richer, and hotter environments. Although this pattern could be related to specific physiological tolerances to temperature and sulphide toxicity, the weak correlation between community structure and physico-chemical variables suggests that additional factors are also involved. Particularly, the low species richness and the overwhelming dominance of L. elevatus in one faunal assemblage suggest that this species may outcompete peltospirids and greatly affect community structure. This hypothesis is supported by large differences in the demographic structure and reproductive biology of L. elevatus between the 2 faunal assemblages.

Copyright

Corresponding author

Correspondence should be addressed to: Eric Thiébaut Station Biologique de Roscoff, UMR7144BP 74, F-29682 Roscoff cedex, France email: thiebaut@sb-roscoff.fr

References

Hide All
Bates, A.E., Tunnicliffe, V. and Lee, R.W. (2005) Role of thermal conditions in habitat selection by hydrothermal vent gastropods. Marine Ecology Progress Series 305, 115.
Chevaldonné, P., Desbruyères, D. and Le Haître, M. (1991) Time-series of temperature from three deep-sea hydrothermal vent sites. Deep-Sea Research Part I 38, 14171430.
Childress, J.J. and Fisher, C.R. (1992) The biology of hydrothermal vent animals: physiology, biogeochemistry, and autotrophic symbioses. Oceanography and Marine Biology: an Annual Review 30, 31104.
Clarke, K.R. and Ainsworth, M. (1993) A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92, 205219.
Clarke, K.R. and Warwick, R.M. (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edition. Plymouth, UK: PRIMER-E Ltd.
Colwell, R.K. (2005) EstimateS v7.5. Statistical estimation of species richness and shared species from samples. User's guide. http://viceroy.eeb.uconn.edu/estimates
Copley, J.T.P., Tyler, P.A., Van Dover, C.L. and Philip, S.J. (2003) Spatial variation in the reproductive biology of Paralvinella palmiformis (Polychaeta: Alvinellidae) from vent field on the Juan de Fuca Ridge. Marine Ecology Progress Series 255, 171181.
Desbruyères, D., Chevaldonné, P., Alayse-Danet, A.-M., Jollivet, D., Lallier, F., Jouin-Toulmond, C., Zal, F., Sarradin, P.-M., Cosson, R., Caprais, J.-C., Arndt, C., O'Brien, J., Guezennec, J., Hourdez, S., Riso, R., Gaill, F., Laubier, L. and Toulmond, A. (1998). Biology and ecology of the ‘Pompeii worm’ (Alvinella Pompejana Desbruyeres and Laubier), a normal dweller of an extreme deep sea environment: a synthesis of current knowledge and recent developments. Deep Sea Research Part II, 45, 383422.
Di Meo-Savoie, C.A., Luther, G.W. and Cary, S.C. (2004) Physicochemical characterization of the microhabitat of the epibionts associated with Alvinella pompejana, a hydrothermal vent annelid. Geochimica et Cosmochimica Acta 68, 2055–2066.
Dreyer, J.C., Knick, K.E., Flickinger, W.B. and Van Dover, C.L. (2005) Development of macrofaunal community structure in mussel beds on the northern East Pacific Rise. Marine Ecology Progress Series 302, 121134.
Gabe, M. 1968. Techniques histologiques. Paris: Masson
Govenar, B.W., Freeman, M., Bergquist, D.C., Johnson, G.A. and Fisher, C.R. (2004) Composition of a one-year-old Riftia pachyptila community following a clearance experiment: insight to succession patterns at deep-sea hydrothermal vents. Biological Bulletin. Marine Biological Laboratory, Woods Hole 207, 177182.
Govenar, B.W., Le Bris, N., Gollner, S., Glanville, J., Aperghis, A.B., Hourdez, S. and Fisher, C.R. (2005) Epifaunal community structure associated with Riftia pachyptila aggregations in chemically different hydrothermal vent habitats. Marine Ecology Progress Series 305, 6777.
Johnson, K.S., Childress, J.J., Beehler, C.L. and Sakamoto-Arnold, C.M. (1994) Biogeochemistry of hydrothermal vent mussel communities: the deep-sea analogue to the intertidal zone. Deep-Sea Research Part I 41, 9931011.
Johnson, K.S., Childress, J.J., Hessler, R.R., Sakamoto-Arnold, C.M. and Beehler, C.L. (1988) Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center. Deep-Sea Research Part II 35, 17231744.
Jollivet, D. (1996) Specific and genetic diversity at deep-sea hydrothermal vents: an overview. Biodiversity and Conservation 5, 16191653.
Jollivet, D., Empis, A., Baker, M.C., Hourdez, S., Comtet, T., Jouin-Toulmond, C., Desbruyères, D. and Tyler, P.A. (2000) Reproductive biology, sexual dimorphism, and population structure of the deep-sea hydrothermal vent scale-worm, Branchipolynoe seepensis (Polychaeta: Polynoidae). Journal of the Marine Biological Association of the United Kingdom 80, 5568.
Kelly, N.E. and Metaxas, A. (2007) Influence of habitat on the reproductive biology of the deep-sea hydrothermal vent limpet Lepetodrilus fucensis (Vetigastropoda: Mollusca) from the Northeast Pacific. Marine Biology 151, 649662.
Le Bris, N. and Gaill, F. (2007) How does the annelid Alvinella pompejana deal with an extreme hydrothermal environment? Reviews in Environmental Science and Biotechnology 6, 197221.
Le Bris, N., Govenar, B., Le Gall, C. and Fisher, C.R. (2006a) Variability of physico-chemical conditions in 9°50′N EPR diffuse flow vent habitats. Marine Chemistry 98, 167182.
Le Bris, N., Rodier, P., Sarradin, P.-M. and Le Gall, C. (2006b) Is temperature a good proxy for sulfide in hydrothermal vent habitats? Cahiers de Biologie Marine 47, 465470.
Le Bris, N., Sarradin, P.-M., Birot, D. and Alayse-Danet, A.-M. (2000) A new chemical analyzer for in situ measurement of nitrate and total sulfide over hydrothermal vent biological communities. Marine Chemistry 72, 115.
Le Bris, N., Sarradin, P.-M. and Caprais, J.-C. (2003) Contrasted sulphide chemistries in the environment of 13°N EPR vent fauna. Deep-Sea Research Part I 50, 737747.
Le Bris, N., Sarradin, P.-M. and Pennec, S. (2001) A new deep-sea probe for in situ pH measurement in the environment of hydrothermal vent biological communities. Deep-Sea Research Part I 48, 1941–1951.
Le Bris, N., Zbinden, M. and Gaill, F. (2005) Processes controlling the physico-chemical micro-environments associated with Pompeii worms. Deep-Sea Research Part I 52, 10851092.
Lee, R.W. (2003) Thermal tolerance of deep-sea hydrothermal vent animals from the northeast Pacific. Biological Bulletin. Marine Biological Laboratory, Woods Hole 205, 98101.
Luther, G.W., Rozan, T.F., Martial, T., Nuzzio, D.B., Di Meo, C., Shank, T.M., Lutz, R.A. and Cary, S.C. (2001) Chemical speciation drives hydrothermal vent ecology. Nature 410, 813816.
Metaxas, A. (2004) Spatial and temporal patterns in larval supply at hydrothermal vents in the northeast Pacific Ocean. Limnology and Oceanography 49, 1949–1956.
Micheli, F., Peterson, C.H., Mullineaux, L.S., Fisher, C.R., Mills, S.W., Sancho, G., Johnson, G.A. and Lenihan, H.S. (2002) Predation structures communities at deep-sea hydrothermal vents. Ecological Monographs 72, 365382.
Mills, S.W., Mullineaux, L.S. and Tyler, P.A. (2007) Habitat associations in gastropod species at East Pacific Rise hydrothermal vents (9°50′N). Biological Bulletin. Marine Biological Laboratory, Woods Hole 212, 185194.
Mullineaux, L.S., Fisher, C.R., Peterson, C.H. and Schaeffer, S.W. (2000) Tubeworm succession at hydrothermal vents: use of biogenic cues to reduce habitat selection error? Oecologia 123, 275284.
Mullineaux, L.S., Mills, S.W. and Goldman, E. (1998) Recruitment variation during a pilot colonization study of hydrothermal vents (9°50′N, East Pacific Rise). Deep-Sea Research Part II 45, 441464.
Mullineaux, L.S., Peterson, C.H., Micheli, F. and Mills, S.W. (2003) Successional mechanism varies along a gradient in hydrothermal fluid flux at deep-sea vents. Ecological Monographs 73, 523542.
Pendlebury, S.J.D. (2004) Ecology of hydrothermal vent gastropods. PhD thesis, University of Southampton, School of Ocean and Earth Science, Southampton, UK.
Pradillon, F., Le Bris, N., Shillito, B., Young, C.M. and Gaill, F. (2005a) Influence of environmental conditions on early developement of the hydrothermal vent polychaete Alvinella pompejana. Journal of Experimental Biology 208, 15511561.
Pradillon, F., Zbinden, M., Mullineaux, L.S. and Gaill, F. (2005b) Colonisation of newly-opened habitat by a pioneer species, Alvinella pompejana (Polychaeta: Alvinellidae), at East Pacific Rise vent sites. Marine Ecology Progress Series 302, 147157.
Sadosky, F., Thiébaut, E., Jollivet, D. and Shillito, B. (2002) Recruitment and population structure of the vetigastropod Lepetodrilus elevatus at 13°N hydrothermal vent sites on East Pacific Rise. Cahiers de Biologie Marine 43, 399402.
Sarradin, P.-M., Caprais, J.-C., Briand, P., Gaill, F., Shillito, B. and Desbruyères, D. (1998) Chemical and thermal description of the environment of the Genesis hydrothermal vent community (13°N, EPR). Cahiers de Biologie Marine 39, 159167.
Sarrazin, J. and Juniper, S.K. (1999) Biological characteristics of a hydrothermal edifice mosaic community. Marine Ecology Progress Series 185, 119.
Sarrazin, J., Robigou, V., Juniper, S.K. and Delaney, J.R. (1997) Biological and geological dynamics over four years on a high-temperature sulfide structure at the Juan de Fuca Ridge hydrothermal observatory. Marine Ecology Progress Series 153, 524.
Shank, T.M., Fornari, D.J., Von Damm, K.L., Lilley, M.D., Haymon, R.M. and Lutz, R.A. (1998) Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50′N, East Pacific Rise). Deep-Sea Research Part II 45, 465515.
Taylor, C.D., Wirsen, C.O. and Gaill, F. (1999) Rapid microbial production in filamentous sulfur mats at hydrothermal vents. Applied and Environmental Microbiology 35, 22532255.
Tivey, M.K., Bradleyb, A.M., Joyce, T.M. and Kadkod, D. (2002) Insights into tide-related variability at seafloor hydrothermal vents from time-series temperature measurements. Earth and Planetary Science Letters 202, 693707.
Tsurimi, M. and Tunnicliffe, V. (2003) Tubeworm-associated communities at hydrothermal vents on the Juan de Fuca Ridge, northeast Pacific. Deep-Sea Research Part I 50, 611629.
Van Dover, C.L. (2003) Variation in community structure within hydrothermal vent mussel beds of the East Pacific Rise. Marine Ecology Progress Series 253, 5566.
Visman, B. (1991) Sulfide tolerance: physiological mechanisms and ecological implications. Ophelia 34, 127.
Von Damm, K. and Lilley, M.D. 2004. Diffuse flow hydrothermal fluids from 9°50′N East Pacific Rise: origin, evolution, and biogeochemical controls. In Wilcock, W.S.D., DeLong, E.F., Kelley, D.S., Baross, J.A. and Cary, S.C. (eds) The subseafloor biosphere at Mid-Ocean Ridges. Washington: American Geophysical Union, pp. 243266.
Zar, J.H. (1999) Biostatistical analysis, 4th edition. Upper Saddle River: Prentice-Hall.

Keywords

Role of physico-chemical environment on gastropod assemblages at hydrothermal vents on the East Pacific Rise (13°N/EPR)

  • Marjolaine Matabos (a1), Nadine Le Bris (a2), Sophie Pendlebury (a3) and Eric Thiébaut (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed