Skip to main content Accessibility help
×
Home

WAIS-III and WMS-III performance in chronic Lyme disease

  • JOHN G. KEILP (a1) (a2), KATHY CORBERA (a1) (a3), IORDAN SLAVOV (a1) (a3), MICHAEL J. TAYLOR (a4), HAROLD A. SACKEIM (a1) (a5) and BRIAN A. FALLON (a1) (a3)...

Abstract

There is controversy regarding the nature and degree of intellectual and memory deficits in chronic Lyme disease. In this study, 81 participants with rigorously diagnosed chronic Lyme disease were administered the newest revisions of the Wechsler Adult Intelligence Scale (WAIS-III) and Wechsler Memory Scale (WMS-III), and compared to 39 nonpatients. On the WAIS-III, Lyme disease participants had poorer Full Scale and Performance IQ's. At the subtest level, differences were restricted to Information and the Processing Speed subtests. On the WMS-III, Lyme disease participants performed more poorly on Auditory Immediate, Immediate, Auditory Delayed, Auditory Recognition Delayed, and General Memory indices. Among WMS-III subtests, however, differences were restricted to Logical Memory (immediate and delayed) and Family Pictures (delayed only), a Visual Memory subtest. Discriminant analyses suggest deficits in chronic Lyme are best characterized as a combination of memory difficulty and diminished processing speed. Deficits were modest, between one-third and two-thirds of a standard deviation, consistent with earlier studies. Depression severity had a weak relationship to processing speed, but little other association to test performance. Deficits in chronic Lyme disease are consistent with a subtle neuropathological process affecting multiple performance tasks, although further work is needed to definitively rule out nonspecific illness effects. (JINS, 2006, 12, 119–129.)

Copyright

Corresponding author

Reprint requests to: John Keilp, Ph.D., Columbia University College of Physicians and Surgeons, Department of Psychiatry, Box 42, NYSPI, 1051 Riverside Drive, New York, NY 10032. E-mail: jgk13@columbia.edu

References

Hide All

REFERENCES

Barona, A., Reynolds, C., & Chastain, R. (1984). A demographically based index of premorbid intelligence for the WAIS-R. Journal of Consulting and Clinical Psychology, 52, 885887.
Barr, W.B., Rastogi, R., Ravdin, L., & Hilton, E. (1999). Relations among indexes of memory disturbance and depression in patients with Lyme borreliosis. Applied Neuropsychology, 6, 1218.
Benke, T., Gasse, T., Hittmair-Delazer, M., & Schmutzhard, E. (1995). Lyme encephalopathy: Long-term neuropsychological deficits years after acute neuroborreliosis. Acta Neurologica Scandinavica, 91, 353357.
Blair, J.R. & Spreen, O. (1989). Predicting premorbid IQ: A revision of the National Adult Reading Test. The Clinical Neuropsychologist, 3, 129136.
Bujak, D.I., Weinstein, A., & Dornbush, R.L. (1996). Clinical and neurocognitive features of the post Lyme syndrome. Journal of Rheumatology, 23, 13921397.
Center for Disease Control. (1997). Case definitions for infectious conditions under public health surveillance. Morbidity and Mortality Weekly, Rep. 46 (No. RR-10), 2021.
Fallon, B.A., Keilp, J., Prohovnik, I., Heertum, R.V., & Mann, J.J. (2003). Regional cerebral blood flow and cognitive deficits in chronic lyme disease. Journal of Neuropsychiatry and Clinical Neurosciences, 15, 326332.
Fallon, B.A., Kochevar, J., & Nields, J.A. (1998). The underdiagnosis of neuropsychiatric Lyme disease in children and adults. Psychiatric Clinics of North America, 21, 693703.
Fallon, B.A. & Nields, J.A. (1994). Lyme disease: A neuropsychiatric illness. American Journal of Psychiatry, 151, 15711583.
Gaudino, E.A., Coyle, P.K., & Krupp, L.B. (1997). Post-Lyme syndrome and chronic fatigue syndrome. Neuropsychiatric similarities and differences. Archives of Neurology, 54, 13721376.
Gustaw, K., Beltowska, K., & Studzinska, M.M. (2001). Neurological and psychological symptoms after the severe acute neuroborreliosis. Annals of Agricultural and Environmental Medicine, 8, 9194.
Halperin, J.J., Krupp, L.B., Golightly, M.G., & Volkman, D.J. (1990). Lyme borreliosis-associated encephalopathy. Neurology, 40, 13401343.
Kaplan, R.F., Jones-Woodward, L., Workman, K., Steere, A.C., Logigian, E.L., & Meadows, M.E. (1999). Neuropsychological deficits in Lyme disease patients with and without other evidence of central nervous system pathology. Applied Neuropsychology, 6, 311.
Kaplan, R.F., Meadows, M.E., Vincent, L.C., Logigian, E.L., & Steere, A.C. (1992). Memory impairment and depression in patients with Lyme encephalopathy: Comparison with fibromyalgia and nonpsychotically depressed patients. Neurology, 42, 12631267.
Kaplan, R.F., Trevino, R.P., Johnson, G.M., Levy, L., Dornbush, R., Hu, L.T., Evans, J., Weinstein, A., Schmid, C.H., & Klempner, M.S. (2003). Cognitive function in post-treatment Lyme disease: Do additional antibiotics help? Neurology, 60, 19161922.
Krupp, L.B., Masur, D., Schwartz, J., Coyle, P.K., Langenbach, L.J., Fernquist, S.K., Jandorf, L., & Halperin, J.J. (1991). Cognitive functioning in late Lyme borreliosis. Archives of Neurology, 48, 11251129.
Lezak, M.D., Howieson, D.B., & Loring, D.W. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.
Logigian, E.L., Johnson, K.A., Kijewski, M.F., Kaplan, R.F., Becker, J.A., Jones, K.J., Garada, B.M., Holman, B.L., & Steere, A.C. (1997). Reversible cerebral hypoperfusion in Lyme encephalopathy. Neurology, 49, 16611670.
Logigian, E.L., Kaplan, R.F., & Steere, A.C. (1990). Chronic neurologic manifestations of Lyme disease. New England Journal of Medicine, 323, 14381444.
Newberg, A., Hassan, A., & Alavi, A. (2002). Cerebral metabolic changes associated with Lyme disease. Nuclear Medicine Communications, 23, 773777.
Orloski, K.A., Hayes, E.B., Campbell, G.L., & Dennis, D.T. (2000). Surveillance for Lyme disease: United States, 1992–1998. Morbidity and Mortality Weekly, Rep. 49 (SS-3), 111.
Pollina, D.A., Elkins, L.E., Squires, N.K., Scheffer, S.R., & Krupp, L.B. (1999a). Does process-specific slowing account for cognitive deficits in Lyme disease? Applied Neuropsychology, 6, 2732.
Pollina, D.A., Sliwinski, M., Squires, N.K., & Krupp, L.B. (1999b). Cognitive processing speed in Lyme disease. Neuropsychiatry, Neuropsychology and Behavioral Neurology, 12, 7278.
Rao, S.M. (1996). White matter disease and dementia. Brain Cognition, 31, 250268.
Ravdin, L.D., Hilton, E., Primeau, M., Clements, C., & Barr, W.B. (1996). Memory functioning in Lyme borreliosis. Journal of Clinical Psychiatry, 57, 282286.
Reed, B.R., Eberling, J.L., Mungas, D., Weiner, M., Kramer, J.H., & Jagust, W.J. (2004). Effects of white matter lesions and lacunes on cortical function. Archives of Neurology, 61, 15451550.
Shadick, N.A., Phillips, C.B., Logigian, E.L., Steere, A.C., Kaplan, R.F., Berardi, V.P., Duray, P.H., Larson, M.G., Wright, E.A., Ginsburg, K.S., Katz, J.N., & Liang, M.H. (1994). The long-term clinical outcomes of Lyme disease: A population-based retrospective cohort study. Annals of Internal Medicine, 121, 560567.
Steere, A.C. (2001). Lyme disease. New England Journal of Medicine, 345, 115125.
Svetina, C., Barr, W.B., Rastogi, R., & Hilton, E. (1999). The neuropsychological examination of naming in Lyme borreliosis. Applied Neuropsychology, 6, 3338.
Veiel, H.O.F. (1997). A preliminary profile of neuropsychological deficits associated with major depression. Journal of Clinical and Experimental Neuropsychology, 19, 587603.
Westervelt, H.J. & McCaffrey, R.J. (2002). Neuropsychological functioning in chronic Lyme disease. Neuropsychology Review, 12, 153177.
Willshire, D., Kinsella, G., & Prior, M. (1991). Estimating WAIS-R IQ from the National Adult Reading Test: A cross-validation. Journal of Clinical and Experimental Neuropsychology, 13, 204216.
Zakzanis, K.K., Leach, L., & Kaplan, E. (1998). On the nature and pattern of neurocognitive function in major depressive disorder. Neuropsychiatry, Neuropsychology and Behavioral Neurology, 11, 111119.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed