Skip to main content Accessibility help
×
Home

Visual perception in prediagnostic and early stage Huntington's disease

  • BRIAN F. O'DONNELL (a1), TANYA M. BLEKHER (a2), MARJORIE WEAVER (a3), KERRY M. WHITE (a3), JEANINE MARSHALL (a3), XABIER BERISTAIN (a4), JULIE C. STOUT (a1), JACQUELINE GRAY (a3), JOANNE M. WOJCIESZEK (a4) and TATIANA M. FOROUD (a3)...

Abstract

Disturbances of visual perception frequently accompany neurodegenerative disorders but have been little studied in Huntington's disease (HD) gene carriers. We used psychophysical tests to assess visual perception among individuals in the prediagnostic and early stages of HD. The sample comprised four groups, which included 201 nongene carriers (NG), 32 prediagnostic gene carriers with minimal neurological abnormalities (PD1); 20 prediagnostic gene carriers with moderate neurological abnormalities (PD2), and 36 gene carriers with diagnosed HD. Contrast sensitivity for stationary and moving sinusoidal gratings, and tests of form and motion discrimination, were used to probe different visual pathways. Patients with HD showed impaired contrast sensitivity for moving gratings. For one of the three contrast sensitivity tests, the prediagnostic gene carriers with greater neurological abnormality (PD2) also had impaired performance as compared with NG. These findings suggest that early stage HD disrupts visual functions associated with the magnocellular pathway. However, these changes are only observed in individuals diagnosed with HD or who are in the more symptomatic stages of prediagnostic HD. (JINS, 2008, 14, 446–453.)

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Visual perception in prediagnostic and early stage Huntington's disease
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Visual perception in prediagnostic and early stage Huntington's disease
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Visual perception in prediagnostic and early stage Huntington's disease
      Available formats
      ×

Copyright

Corresponding author

Correspondence and reprint requests to: Brian F. O'Donnell, Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405. E-mail: bodonnel@indiana.edu

References

Hide All

REFERENCES

Barton, J.J., Simpson, T., Kiriakopoulos, E., Stewart, C., Crawley, A., Guthrie, B., Wood, M., & Mikulis, D. (1996). Functional MRI of lateral occipitotemporal cortex during pursuit and motion perception. Annals of Neurology, 40, 387398.
Beglinger, L.J., Nopoulos, P.C., Jorge, R.E., Lanbehn, D.R., Mikos, A.E., Moser, D.J., Duff, K., Robinson, R.G., & Paulson, J.S. (2005). White matter volume and cognitive dysfunction in early Huntington's disease. Cognitive and Behavioral Neurology, 18, 102107.
Blekher, T., Johnson, S.A., Marshall, J., White, K., Hui, S., Weaver, M., Gray, J., Yee, R., Stout, J.C., Beristain, X., Wojcieszek, J., & Foroud, T. (2006). Saccades in presymptomatic and early stages of Huntington disease. Neurology, 67, 394399.
Bond, C. & Hodes, M.E. (1996). Direct amplification of the CAG Repeat of Huntington without amplification of CCG. Clinical Chemistry, 42, 773774.
Brenner, C.A., Wilt, M.A., Lysaker, P.H., & O'Donnell, B.F. (2003). Psychometrically matched tasks of discrimination and recognition performance in schizophrenia spectrum disorders. Journal of Abnormal Psychology, 112, 2837.
Egelhaaf, M., Borst, A., & Pilz, B. (1990). The role of GABA in detecting visual motion. Brain Research, 509, 156160.
Ellenberger, J.C., Petro, D.J. & Ziegler, S.B. (1978). The visual evoked potentials in Huntington disease. Neurology, 28, 9597.
Fennema-Notestine, C., Archibald, S.L., Jacobson, M.W., Corey-Bloom, C., Paulsen, J.S., Peavy, G.M., Gamst, A.C., Hamilton, J.M., Salmon, D.P., & Jernigan, T.L. (2004). In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology, 63, 989995.
Festa, E.K., Insler, R.Z., Salmon, D.P., Paxton, J., Hamilton, J.M., & Heindel, W.C. (2005). Neocortical disconnectivity disrupts sensory integration in Alzheimer's disease. Neuropsychology, 19, 728738.
Foroud, T., Siemers, E., Kleindorfer, D., Bill, D.J., Hodes, M.E., Norton, J.A., Conneally, P.M., & Christian, J.C. (1995). Cognitive scores in carriers of Huntington's disease gene compared to noncarriers. Annals of Neurology, 37, 657664.
Giersch, A. & Herzog, M.H. (2004). Lorazepam strongly prolongs visual information processing. Neuropsychopharmacology, 29, 13861394.
Gilmore, G.C., Cronin-Golomb, A., Neargarder, S.A., & Morrison, S.R. (2005). Enhanced stimulus contrast normalizes visual processing of rapidly presented letters in Alzheimer's disease. Vision Research, 45, 10131020.
Gómez-Tortosa, E., del Barrio, A., Barroso, T., & Garcia Ruiz, P.J. (1996). Visual processing disorders in patients with Huntington's disease and asymptomatic carriers. Journal of Neurology, 243, 286292.
Hahn-Barma, V., Deweer, B., Dürr, A., Dodé, C., Feingold, J., Pillon, B., Agid, Y., Brice, A., & Dubois, B. (1998). Are cognitive changes the first symptoms of Huntington's disease? A study of gene carriers. Journal of Neurology, Neurosurgery and Psychiatry, 64, 172177.
Hinton, S.C., Paulsen, J.S., Hoffmann, R.G., Reynolds, N.C., Zimbelman, J.L., & Rao, S.M. (2007). Motor timing variability increases in preclinical Huntington's disease as estimate onset of motor symptoms approaches. Journal of the International Neuropsychological Society, 13, 539543.
Ho, A.K., Sahakian, B.J., Brown, R.G., Barker, R.A., Hodges, J.R., Ané, M.N., Snowden, J., Thompson, J., Esmonde, T., Gentry, R., Moore, J.W., Bodner, T., & NEST—HD Consortium. (2003). Profile of cognitive progression in early Huntington's disease. Neurology, 61, 17021706.
Huntington Study Group. (1996). Unified Huntington's Disease Rating Scale: Reliability and consistency. Movement Disorders, 11, 136142.
Huntington's Disease Collaborative Research Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell, 72, 971983.
Jacobs, D.H., Shuren, J., & Heilman, K.M. (1995). Impaired perception of facial identity and facial affect in Huntington's disease. Neurology, 45, 12171218.
Jason, G.W., Suchowersky, O., Pajurkova, E.M., Graham, L., Klimek, M.L., Garber, A.T., & Poirier-Heine, D. (1997). Cognitive manifestations of Huntington disease in relation to genetic structure and clinical onset. Archives of Neurology, 54, 10811088.
Kirkwood, S.C., Siemers, E., Hodes, M.E., Conneally, P.M., Christian, J.C., & Foroud, T. (2000). Subtle changes among presymptomatic Huntington's disease mutation carriers. Journal of Neurology Neurosurgery and Psychiatry, 69, 773779.
Langbehn, D.R., Brinkman, R.R., Falush, D., Paulsen, J.S., & Hayden, M.R. (2004). International Huntington's Disease Collaborative Group. A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length. Clinical Genetics, 65, 267277.
Leventhal, A.G., Wang, Y., Pu, M., Zhou, Y., & Ma, Y. (2003). GABA and its agonists improve visual cortical function in senescent monkeys. Science, 300, 812815.
Levitt, H. (1971). Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America, 49, 467477.
Livingstone, M. & Hubel, D. (1988). Segregation of form, color, movement and depth: Anatomy, physiology and perception. Science, 240, 740749.
Mohr, E., Brouwers, P., Claus, J.J., Mann, U.M., Fedio, P., & Chase, T. (1991). Visuospatial cognition in Huntington's disease. Movement Disorders, 6, 127132.
Mühlau, M., Weindl, A., Wohlschläger, A.M., Gaser, C., Städtler, M., Valet, M., Zimmer, C., Kassubek, J., & Peinemann, A. (2007). Voxel-based morphometry indicates relative preservation of the limbic prefrontal cortex in early Huntington disease. Journal of Neural Transmission, 114, 367372
O'Donnell, B.F., Bismark, A., Hetrick, W.P., Bodkins, M., Vohs, J.L., & Shekhar, A. (2006). Early stage vision in schizophrenia and schizotypal personality disorder. Schizophrenia Research, 86, 8998.
O'Donnell, B.F., Wilt, M.A., Hake, A., Stout, J.C., Kirkwood, S.C., & Foroud, T. (2003). Visual function in Huntington's disease patients and presymptomatic mutation carriers. Movement Disorders, 18, 10271034.
Oepen, G., Doerr, M., & Thoden, U. (1981). Visual (VEP) and somatosensory (SSEP) evoked potentials is Huntington's chorea. Electroencephalography and Clinical Neurophysiology, 51, 666670.
Rizzo, M., Anderson, S.W., Dawson, J., & Nawrot, M. (2002). Vision and cognition in Alzheimer's disease. Neuropsychologia, 38, 157169.
Rodnitzky, R.L. (1998). Visual dysfunction in Parkinson's disease. Clinical Neuroscience, 5, 102106.
Rosas, H.D., Liu, A.K., Hersch, S., Glessner, M., Ferrante, R.J., Salat, D.H., van der Kouwe, A., Jenkins, B.G., Dale, A.M., & Fischl, B. (2002). Regional and progressive thinning of the cortical ribbon in Huntington's disease. Neurology, 58, 695701.
Slaghuis, W.L. (1998). Contrast sensitivity for stationary and drifting spatial frequency gratings in positive- and negative-symptom schizophrenia. Journal of Abnormal Psychology, 107, 4962.
Spear, P.D. (1993). Neural bases of visual deficits during aging. Vision Research, 33, 25892609.
Sprengelmeyer, R., Young, A.W., Calder, A.J., Karnat, A., Lange, H., Hömberg, V., Perrett, D.I., & Rowland, D. (1996). Loss of disgust: Perception of faces and emotions in Huntington's disease. Brain, 119, 16471665.
Storey, E., Kowall, N.W., Finn, S.F., Mazurek, M.F., & Beal, M.F. (1992). The cortical lesion of Huntington's disease: Further neurochemical characterization, and reproduction of some of the histological and neurochemical features by N-methyl-D-aspartate lesions of rat cortex. Annals of Neurology, 32, 526534.
Tyler, C.W. & McBride, B. (1995). The Morphonome Image Psychophysics Software and Calibrator for Macintosh Systems. Spatial Vision, 10, 479484.
Uc, E.Y., Rizzo, M., Anderson, S.W., Qian, S., Rodnitzky, R.L., & Dawson, J.D. (2005). Visual dysfunction in Parkinson disease without dementia. Neurology, 65, 19071913.
Vaina, L.M., Cowey, A., Eskew, R.T. Jr., LeMay, M., & Kemper, T. (2001). Regional cerebral correlates of global motion perception: Evidence from unilateral cerebral brain damage. Brain, 124, 310321.
Wandell, B.A. (1995). Foundations of vision. Sunderland, MA: Sinauer.
Wandell, B.A. (1999). Computational neuroimaging of human visual cortex. Annual Review of Neuroscience, 22, 145173.
Wechsler, D. (1981). Wechsler Adult Intelligence Scale–Revised. New York: Psychological Corp.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed