Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T21:32:25.105Z Has data issue: false hasContentIssue false

Utility of empathy informant report in FTD differential diagnosis

Published online by Cambridge University Press:  26 September 2022

Carissa M. Lane*
Affiliation:
School of Psychology, Counseling and Family Therapy, Wheaton College, Wheaton, IL, USA Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
Mary Lee
Affiliation:
School of Psychology, Counseling and Family Therapy, Wheaton College, Wheaton, IL, USA University of Chicago Medical Center, Chicago, IL, USA
Jacob Lowe
Affiliation:
School of Psychology, Counseling and Family Therapy, Wheaton College, Wheaton, IL, USA Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
Corey Bolton
Affiliation:
School of Psychology, Counseling and Family Therapy, Wheaton College, Wheaton, IL, USA Vanderbilt University Medical Center, Nashville, TN, USA
Benjamin A. Pyykkonen
Affiliation:
School of Psychology, Counseling and Family Therapy, Wheaton College, Wheaton, IL, USA
*
Corresponding author: Carissa M. Lane, email: carissa.lane@va.gov

Abstract

Objective:

Loss of empathy is a hallmark feature of behavioral variant frontotemporal dementia (bvFTD). Change in socioemotional functioning identified by others is often the primary initial presenting concern in this disorder, in contrast to more subtle early cognitive changes and limited patient insight. The present study examined the predictive utility of an empathy informant-report measure for discriminating clinician-diagnosed bvFTD from other dementia syndromes.

Method:

Data from the National Alzheimer’s Coordinating Center (NACC) database were used to study individuals with bvFTD (n = 406) and other dementia syndromes (n = 385). Participants were administered neuropsychological measures and collateral informants completed an informant-report of empathy.

Results:

Informants reported that patients with bvFTD demonstrated significantly lower levels of empathic concern [F(1, 789) = 120.91, p < .001, η 2 = 0.13] and perspective taking [F(1, 789) = 153.08, p < .001, η 2 = 0.16] than patients with other dementia syndromes. These differences were not attributable to the level of global cognitive impairment. Empathy scores were not significantly associated with any neurocognitive measure when controlling for age. ROC curve analyses showed fair to good clinical utility of the informant-report empathy measure for distinguishing bvFTD from non-bvFTD, whereas a traditional measure of executive functioning failed to differentiate the groups.

Conclusions:

These findings indicate that informant ratings of empathy offer a unique source of clinical information that may be useful in detecting neurobehavioral changes specific to bvFTD before a clear neurocognitive pattern emerges on testing.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, M. J., Litvan, I., Lang, A. E., Bak, T. H., Bhatia, K. P., Borroni, B., Boxer, A. L., Dickson, D. W., Grossman, M., Hallett, M., Josephs, K. A., Kertesz, A., Lee, S. E., Miller, B. L., Reich, S. G., Riley, D. E., Tolosa, E., Troster, A. I., Vidailhet, M., & Weiner, W. J. (2013). Criteria for the diagnosis of corticobasal degeneration. Neurology, 80(5), 496503.CrossRefGoogle ScholarPubMed
Bang, J., Spina, S., & Miller, B. L. (2015). Non-Alzheimer’s dementia. Lancet (London, England), 386(10004), 16721682.CrossRefGoogle Scholar
Beekly, D. L., Ramos, E. M., Lee, W. W., Deitrich, W. D., Jacka, M. E., Wu, J., Kukull, W. A., & NIA Alzheimer’s Disease Centers (2007). The National Alzheimer’s Coordinating Center (NACC) database: The Uniform Data Set. Alzheimer Disease and Associated Disorders, 21(3), 249258.CrossRefGoogle Scholar
Beer, J. S., John, O. P., Scabini, D., & Knight, R. T. (2006). Orbitofrontal Cortex and social behavior: Integrating self-monitoring and emotion-cognition interactions. Journal of Cognitive Neuroscience, 18(6), 871879.CrossRefGoogle ScholarPubMed
Bensimon, G., Ludolph, A., Agid, Y., Vidailhet, M., Payan, C., Leigh, P. N., & NNIPPS Study Group (2009). Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: The NNIPPS study. Brain: A Journal of Neurology, 132(1), 156171.CrossRefGoogle ScholarPubMed
Besser, L., Kukull, W., Knopman, D. S., Chui, H., Galasko, D., Weintraub, S., Jicha, G., Carlsson, C., Burns, J., Quinn, J., Sweet, R. A., Rascovsky, K., Teylan, M., Beekly, D., Thomas, G., Bollenbeck, M., Monsell, S., Mock, C., Zhou, X. H., …Morris, J. C. (2018). Version 3 of the National Alzheimer’s Coordinating Center’s Uniform Data Set. Alzheimer Disease and Associated Ddisorders, 3(4), 351358.CrossRefGoogle Scholar
Brooks, B. R., Miller, R. G., Swash, M., Munsat, T. L., & World Federation of Neurology Research Group on Motor Neuron Diseases (2000). El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis and other motor neuron disorders: Official publication of the World Federation of Neurology. Research Group on Motor Neuron Diseases, 1(5), 293299.Google Scholar
Burgess, P., Alderman, N., Evans, J., Emslie, H., & Wilson, B. (1998). The ecological validity of tests of executive function. Journal of the International Neuropsychological Society, 4(6), 547558.CrossRefGoogle ScholarPubMed
Cairns, N. J., Bigio, E. H., Mackenzie, I. R. A., Neumann, M., Lee, V. M.-Y., Hatanpaa, K. J., White, C. L. III, Schneider, J. A., Grinberg, L. T., Halliday, D., Duyckaerts, C., Lowes, J. S., Holm, I. E., Tolnay, M., Okamoto, K., Yokoo, H., Murayama, S., Woulfe, J., Munoz, D. G., …Mann, D. M. A. (2007). Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: Consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathologica, 114(1), 522.CrossRefGoogle Scholar
Carr, A. R., & Mendez, M. F. (2018). Affective empathy in behavioral variant frontotemporal dementia: A meta-analysis. Frontiers in Neurology, 9, 2456.CrossRefGoogle ScholarPubMed
Crutch, S. J., Schott, J. M., Rabinovici, G. D., Boeve, B. F., Cappa, S. F., Dickerson, B. C., Dubois, B., Graff‐Radford, N. R., Krolak‐Salmon, P., Lehmann, M., Mendez, M. F., Pijnenburg, Y., Ryan, N. S., Scheltens, P., Shakespeare, T., Tang‐Wai, D. F., Filer, W. M., Bain, L., Carrillo, M. C., & Fox, N. C. (2013). Shining a light on posterior cortical atrophy. Alzheimer’s & Dementia, 9(4), 463465.CrossRefGoogle ScholarPubMed
Davis, M. H. (1980). A multidimensional approach to individual differences in empathy. JSAS Catalog of Selected Documents in Psychology, 10, 85.Google Scholar
Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a multidimensional approach. Journal of Personality and Social Psychology, 44(1), 113126.CrossRefGoogle Scholar
Dermody, N., Wong, S., Ahmed, R., Piguet, O., Hodges, J. R., & Irish, M. (2016). Uncovering the neural bases of cognitive and affective empathy deficits in Alzheimer’s disease and the behavioral-variant of frontotemporal dementia. Journal of Alzheimer’s Disease: JAD, 53(3), 801816.CrossRefGoogle ScholarPubMed
Desmarais, P., Lanctôt, K. L., Masellis, M., Black, S. E., & Herrmann, N. (2018). Social inappropriateness in neurodegenerative disorders. International Psychogeriatrics, 30(2), 197207.CrossRefGoogle ScholarPubMed
Eslinger, P. J. (1998). Neurological and neuropsychological bases of empathy. European Neurology, 39(4), 193199.CrossRefGoogle ScholarPubMed
Eslinger, P. J., Moore, P., Anderson, C., & Grossman, M. (2011). Social cognition, executive functioning, and neuroimaging correlates of empathic deficits in frontotemporal dementia. The Journal of Neuropsychiatry and Clinical Neurosciences, 23(1), 7482.CrossRefGoogle ScholarPubMed
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198.CrossRefGoogle Scholar
Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., Ogar, J. M., Rohrer, J., Black, S., Boeve, B. F., Manes, F., Dronkers, N. F., Vandenberghe, R., Rascovsky, K., Patterson, K., Miller, B., Knopman, D. S., Hodges, J. R., Mesulam, M. M., & Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 10061014.CrossRefGoogle ScholarPubMed
Ivanova, I., Salmon, D. P., & Gollan, T. H. (2013). The multilingual naming test in Alzheimer’s disease: Clues to the origin of naming impairments. Journal of the International Neuropsychological Society: JINS, 19(3), 272283.CrossRefGoogle Scholar
Kaplan, E., Goodglass, H., Weintraub, S., & Goodglass, H. (1983). Boston naming test. Lea & Febiger.Google Scholar
Litvan, I., Bhatia, K. P., Burn, D. J., Goetz, C. G., Lang, A. E., McKeith, I., Quinn, N., Sethi, K. D., Shults, C., Wenning, G. K., & Movement Disorders Society Scientific Issues Committee (2003). Movement Disorders Society Scientific Issues Committee report: SIC Task Force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Movement Disorders: Official Journal of the Movement Disorder Society, 18(5), 467486.CrossRefGoogle ScholarPubMed
Mackenzie, I. R. A., Neumann, M., Bigio, E. H., Cairns, N. J., Alafuzoff, I., Kril, J., Kovacs, G. G., Ghetti, B., Halliday, G., Holm, I. E., Ince, P. G., Kamphorst, W., Revesz, T., Rozemuller, A. J. M., Kumar-Singh, S., Akiyama, H., Baborie, A., Spina, S., Dickson, D. W., …Mann, D. M. A. (2010). Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: An update. Acta Neuropathologica, 119(1), 14.CrossRefGoogle ScholarPubMed
Maiovis, P., Ioannidis, P., Gerasimou, G., Gotzamani-Psarrakou, A., & Karacostas, D. (2018). Cognitive reserve hypothesis in frontotemporal dementia: Evidence from a brain spect study in a series of greek frontotemporal dementia patients. Neuro-Degenerative Diseases, 18(2-3), 6973.CrossRefGoogle Scholar
McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R. Jr, Kawas, C. H., Klunk, W. E., Koroshetz, W. J., Manly, J. J., Mayeux, R., Mohs, R. C., Morris, J. C., Rossor, M. N., Scheltens, P., Carrillo, M. C., Thies, B., Weintraub, S., & Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 7(3), 263269.CrossRefGoogle ScholarPubMed
McKeith, I. G., Boeve, B. F., Dickson, D. W., Halliday, G., Taylor, J. P., Weintraub, D., Aarsland, D., Galvin, J., Attems, J., Ballard, C. G., Bayston, A., Beach, T. G., Blanc, F., Bohnen, N., Bonanni, L., Bras, J., Brundin, P., Burn, D., Chen-Plotkin, A., …Kosaka, K. (2017). Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology, 89(1), 88100.CrossRefGoogle ScholarPubMed
Monsell, S. E., Dodge, H. H., Zhou, X-H., Bu, Y., Besser, L. M., Mock, C., Hawes, S. E., Kukull, W. A., & Weintraub, S. (2016). Results from the NACC Uniform Data Set Neuropsychological Battery Crosswalk Study. Alzheimer Disease & Associated Disorders, 30(2), 134139.CrossRefGoogle ScholarPubMed
Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695699.CrossRefGoogle Scholar
Odhuba, R., van den Broek, M., & Johns, L. (2005). Ecological validity of measures of executive functioning. The British Journal of Clinical Psychology, 44(2), 269278.CrossRefGoogle ScholarPubMed
Perry, D. C., Brown, J. A., Possin, K. L., Datta, S., Trujillo, A., Radke, A., Karydas, A., Kornak, J., Sias, A. C., Rabinovici, G. D., Gorno-Tempini, M. L., Boxer, A. L., De May, M., Rankin, K., Sturm, V. E., Lee, S. E., Matthews, B. R., Kao, A. W., Vossel, K. A., …Seeley, W. W. (2017). Clinicopathological correlations in behavioural variant frontotemporal dementia. Brain, 140(12), 33293345.CrossRefGoogle ScholarPubMed
Placek, K., Massimo, L., Olm, C., Ternes, K., Firn, K., Van Deerlin, V., Lee, E. B., Trojanowski, J. Q., Lee, V. M.-Y., Irwin, D., Grossman, M., & McMillan, C. T. (2016). Cognitive reserve in frontotemporal degeneration: Neuroanatomic and neuropsychological evidence. Neurology, 87(17), 18131819.CrossRefGoogle ScholarPubMed
Possin, K. L., LaMarre, A. K., Wood, K. A., Mungas, D. M., & Kramer, J. H. (2014). Ecological validity and neuroanatomical correlates of the NIH EXAMINER executive composite score. Journal of the International Neuropsychological Society : JINS, 20(1), 2028.CrossRefGoogle ScholarPubMed
Rankin, K. P., Kramer, J. H., & Miller, B. L. (2005). Patterns of cognitive and emotional empathy in frontotemporal lobar degeneration. Cognitive and Behavioral Neurology, 18(1), 2836.CrossRefGoogle ScholarPubMed
Rankin, K. P., Gorno-Tempini, M. L., Allison, S. C., Stanley, C. M., Glenn, S., Weiner, M. W., & Miller, B. L. (2006). Structural anatomy of empathy in neurodegenerative disease. Brain: A Journal of Neurology, 129(Pt 11), 29452956.CrossRefGoogle ScholarPubMed
Rascovsky, K., Hodges, J. R., Knopman, D., Mendez, M. F., Kramer, J. H., Neuhaus, J., van Swieten, J. C., Seelaar, H., Dopper, E. G. P., Onyike, C. U., Hillis, A. E., Josephs, K. A., Boeve, B. F., Kertesz, A., Seeley, W. W., Rankin, K. P., Johnson, J. K., Gorno-Tempini, M.-L., Rosen, H., …Miller, B. L. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain, 134(9), 24562477.CrossRefGoogle ScholarPubMed
Ravdin, L., & Katzen, H. (2013). Handbook on the neuropsychology of aging and dementia (Clinical handbooks in neuropsychology). Springer.CrossRefGoogle Scholar
Seeley, W. W., Crawford, R., Rascovsky, K., Kramer, J. H., Weiner, M., Miller, B. L., & Gorno Tempini, M. L. (2008). Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Archives of Neurology, 65(2), 249255.CrossRefGoogle ScholarPubMed
Wechsler, D. (1987). Manual for the Wechsler Memory Scale-Revised. The Psychological Corporation.Google Scholar
Weintraub, S., Besser, L., Dodge, H. H., Teylan, M., Ferris, S., Goldstein, F. C., Giordani, B., Kramer, J., Loewenstein, D., Marson, D., Mungas, D., Salmon, D., Welsh-Bohmer, K., Zhou, X.-H., Shirk, S. D., Atri, A., Kukull, W. A., Phelps, C., & Morris, J. C. (2018). Version 3 of the Alzheimer Disease Centers' Neuropsychological Test Battery in the Uniform Data Set (UDS). Alzheimer Disease and Associated Disorders, 32(1), 1017.CrossRefGoogle ScholarPubMed
Weintraub, S., Salmon, D., Mercaldo, N., Ferris, S., Graff-Radford, N. R., Chui, H., Cummings, J., DeCarli, C., Foster, N. L., Galasko, D., Peskind, E., Dietrich, W., Beekly, D. L., Kukull, W. A., & Morris, J. C. (2009). The Alzheimer’s Disease Centers’ Uniform Data Set (UDS). Alzheimer Disease & Associated Disorders, 23(2), 11.CrossRefGoogle ScholarPubMed
Wright, J. K. X., Grainger, S. A., Coundouris, S. P., & Henry, J. D. (2021). Affective empathy in neurodegenerative disorders: The importance of measurement type. Neuroscience and Biobehavioral Reviews, 127(5), 808819.CrossRefGoogle ScholarPubMed