Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T07:04:15.276Z Has data issue: false hasContentIssue false

Strategy Use, Planning, and Rule Acquisition Deficits in Spinocerebellar Ataxia Type 2 Patients

Published online by Cambridge University Press:  23 March 2015

Israel Vaca-Palomares
Affiliation:
Laboratory of Neuropsychology, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico City, Mexico
Rosalinda Díaz
Affiliation:
Laboratory of Neuropsychology, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico City, Mexico
Roberto Rodríguez-Labrada
Affiliation:
Centre for the Investigation and Rehabilitation of Hereditary Ataxias, Holguin, Cuba
Jacqueline Medrano-Montero
Affiliation:
Centre for the Investigation and Rehabilitation of Hereditary Ataxias, Holguin, Cuba
Raúl Aguilera-Rodríguez
Affiliation:
Centre for the Investigation and Rehabilitation of Hereditary Ataxias, Holguin, Cuba
Yaimeé Vázquez-Mojena
Affiliation:
Centre for the Investigation and Rehabilitation of Hereditary Ataxias, Holguin, Cuba
Juan Fernandez-Ruiz
Affiliation:
Laboratory of Neuropsychology, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico City, Mexico Faculty of Psychology, University of Veracruz, Xalapa, Veracruz, Mexico
Luis Velázquez-Pérez*
Affiliation:
Centre for the Investigation and Rehabilitation of Hereditary Ataxias, Holguin, Cuba
*
Correspondence and reprint requests to: Velázquez-Pérez Luis, Carretera central km 51/12 Vía Habana. Reparto Edecio Pérez, Holguín. Postal code: 80100. E-mail: velazq63@gmail.com

Abstract

Our goal was to improve spinocerebellar ataxia type 2 (SCA2) cognitive profile characterization by testing the hypothesis that strategy, planning and rule acquisition capacities are affected in SCA2. Forty one patients with SCA2 were evaluated with the Spatial Working Memory (SWM), the Stockings of Cambridge (SOC), and the Intra-Extra Dimensional Shift (IED) tests of the Executive module of the Cambridge Neuropsychological Testing Automated Battery (CANTAB). Paired Associates Learning (PAL) and Delayed Matching to Sample (DMS) from the CANTAB memory module were also assessed to corroborate previous findings. Motor deterioration was measured using the Scale for the Assessment and Rating of Ataxia (SARA). We found significant SCA2 related deficits in strategy, planning, and rule acquisition. Our results also corroborated significant memory deficits in these patients with SCA2. Further analysis also showed that patients with large motor deterioration had poorer associative learning and spatial planning scores. Patients with SCA2 show strategy, planning, and rule acquisition deficits as revealed with the CANTAB battery. These deficits should be noted when planning an effective therapy for these patients. (JINS, 2015, 21, 1–7)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bürk, K. (2007). Cognition in hereditary ataxia. Cerebellum, 6(3), 280286. doi:10.1080/14734220601115924 Google Scholar
Bürk, K., Globas, C., Bösch, S., Gräber, S., Abele, M., Brice, A., … Klockgether, T. (1999). Cognitive deficits in spinocerebellar ataxia 2. Brain, 122(4), 769777. doi:10.1093/brain/122.4.769 Google Scholar
Bürk, K., Globas, C., Bösch, S., Klockgether, T., Zühlke, C., Daum, I., & Dichgans, J. (2003). Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. Journal of Neurology, 250(2), 207211. doi:10.1007/s00415-003-0976-5 Google Scholar
Cancel, G., Dürr, A., Didierjean, O., Imbert, G., Bürk, K., Lezin, A., … Brice, A. (1997). Molecular and Clinical Correlations in Spinocerebellar Ataxia 2: A Study of 32 Families. Human Molecular Genetics, 6(5), 709715. doi:10.1093/hmg/6.5.709 Google Scholar
Council for International Organizations of Medical Sciences (2002). International ethical guidelines for biomedical research involving human subjects. Bulletin of Medical Ethics, 182, 1723.Google Scholar
Della Nave, R., Ginestroni, A., Tessa, C., Cosottini, M., Giannelli, M., Salvatore, E., … Mascalchi, M. (2008). Brain structural damage in spinocerebellar ataxia type 2. A voxel-based morphometry study. Movement Disorders, 23(6), 899903. doi:10.1002/mds.21982 Google Scholar
Della Nave, R., Ginestroni, A., Tessa, C., Salvatore, E., De Grandis, D., Plasmati, R., … Mascalchi, M. (2008). Brain white matter damage in SCA1 and SCA2. An in vivo study using voxel-based morphometry, histogram analysis of mean diffusivity and tract-based spatial statistics. Neuroimage, 43(1), 1019. doi:10.1016/j.neuroimage.2008.06.036 Google Scholar
Downes, J.J., Roberts, A.C., Sahakian, B.J., Evenden, J.L., Morris, R.G., & Robbins, T.W. (1989). Impaired extra-dimensional shift performance in medicated and unmedicated Parkinson’s disease: Evidence for a specific attentional dysfunction. Neuropsychologia, 27(11-12), 13291343.Google Scholar
Fancellu, R., Paridi, D., Tomasello, C., Panzeri, M., Castaldo, A., Genitrini, S., … Girotti, F. (2013). Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. Journal of Neurology, 260(12), 31343143. doi:10.1007/s00415-013-7138-1 CrossRefGoogle Scholar
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198. doi:10.1016/0022-3956(75)90026-6 Google Scholar
Garrard, P., Martin, N.H., Giunti, P., & Cipolotti, L. (2008). Cognitive and social cognitive functioning in spinocerebellar ataxia: A preliminary characterization. Journal of Neurology, 255(3), 398405. doi:10.1007/s00415-008-0680-6 Google Scholar
Goel, G., Pal, P.K., Ravishankar, S., Venkatasubramanian, G., Jayakumar, P.N., Krishna, N., … Jain, S. (2011). Gray matter volume deficits in spinocerebellar ataxia: An optimized voxel based morphometric study. Parkinsonism & Related Disorders, 17(7), 521527. doi:10.1016/j.parkreldis.2011.04.008 Google Scholar
Hernandez-Castillo, C.R., Alcauter, S., Galvez, V., Barrios, F.A., Yescas, P., Ochoa, A., … Fernandez-Ruiz, J. (2013). Disruption of visual and motor connectivity in spinocerebellar ataxia type 7. Movement Disorders, 28(12), 17081716. doi:10.1002/mds.25618 CrossRefGoogle ScholarPubMed
Kawai, Y., Suenaga, M., Watanabe, H., & Sobue, G. (2009). Cognitive Impairment in Spinocerebellar Degeneration. European Neurology, 61(5), 257268. doi:10.1159/000206850 Google Scholar
Klinke, I., Minnerop, M., Schmitz-Hübsch, T., Hendriks, M., Klockgether, T., Wüllner, U., … Helmstaedter, C. (2010). Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum, 9(3), 433442. doi:10.1007/s12311-010-0183-8 CrossRefGoogle Scholar
Koziol, L.F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., … Yamazaki, T. (2014). Consensus paper: The cerebellum’s role in movement and cognition. Cerebellum, 13(1), 151177. doi:10.1007/s12311-013-0511-x Google Scholar
Lawrence, A.D., Sahakian, B.J., Hodges, J.R., Rosser, A.E., Lange, K.W., & Robbins, T.W. (1996). Executive and mnemonic functions in early Huntington’s disease. Brain, 119(Pt 5), 16331645.Google Scholar
Le Pira, F., Giuffrida, S., Maci, T., Marturano, L., Tarantello, R., Zappalà, G., … Zappia, M. (2007). Dissociation between motor and cognitive impairments in SCA2: Evidence from a follow-up study. Journal of Neurology, 254(10), 14551456. doi:10.1007/s00415-007-0548-1 Google Scholar
Le Pira, F., Zappalà, G., Saponara, R., Domina, E., Restivo, D.A., Reggio, E., … Giuffrida, S. (2002). Cognitive findings in spinocerebellar ataxia type 2: Relationship to genetic and clinical variables. Journal of the Neurological Sciences, 201(1–2), 5357. doi:10.1016/S0022-510X(02)00194-6 Google Scholar
Manto, M.-U. (2005). The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum, 4(1), 26. doi:10.1080/14734220510007914 Google Scholar
Mehta, M.A., Sahakian, B.J., McKenna, P.J., & Robbins, T.W. (1999). Systemic sulpiride in young adult volunteers simulates the profile of cognitive deficits in Parkinson’s disease. Psychopharmacology, 146(2), 162174.Google Scholar
Miotto, E.C., Bullock, P., Polkey, C.E., & Morris, R.G. (1996). Spatial working memory and strategy formation in patients with frontal lobe excisions. Cortex, 32(4), 613630.Google Scholar
Orsi, L., D’Agata, F., Caroppo, P., Franco, A., Caglio, M.M., Avidano, F., … Mortara, P. (2011). Neuropsychological picture of 33 spinocerebellar ataxia cases. Journal of Clinical and Experimental Neuropsychology, 33(3), 315325. doi:10.1080/13803395.2010.518139 CrossRefGoogle ScholarPubMed
Owen, A.M., Beksinska, M., James, M., Leigh, P.N., Summers, B.A., Marsden, C.D., … Robbins, T.W. (1993). Visuospatial memory deficits at different stages of Parkinson’s disease. Neuropsychologia, 31(7), 627644.Google Scholar
Owen, A.M., Downes, J.J., Sahakian, B.J., Polkey, C.E., & Robbins, T.W. (1990). Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia, 28(10), 10211034.Google Scholar
Owen, A.M., James, M., Leigh, P.N., Summers, B.A., Marsden, C.D., Quinn, N.P., … Robbins, T.W. (1992). Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain, 115(Pt 6), 17271751.Google Scholar
Owen, A.M., Morris, R.G., Sahakian, B.J., Polkey, C.E., & Robbins, T.W. (1996). Double dissociations of memory and executive functions in working memory tasks following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Brain, 119(Pt 5), 15971615.Google Scholar
Pantelis, C., Barnes, T.R., Nelson, H.E., Tanner, S., Weatherley, L., Owen, A.M., … Robbins, T.W. (1997). Frontal-striatal cognitive deficits in patients with chronic schizophrenia. Brain, 120(10), 18231843. doi:10.1093/brain/120.10.1823 CrossRefGoogle ScholarPubMed
Pulst, S.-M., Nechiporuk, A., Nechiporuk, T., Gispert, S., Chen, X.-N., Lopes-Cendes, I., … Sahba, S. (1996). Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genetics, 14(3), 269276. doi:10.1038/ng1196-269 Google Scholar
Riekkinen, M., Kejonen, K., Jäkälä, P., Soininen, H., & Riekkinen, P. (1998). Reduction of noradrenaline impairs attention and dopamine depletion slows responses in Parkinson’s disease. The European Journal of Neuroscience, 10(4), 14291435.Google Scholar
Robbins, T.W. (1996). Dissociating executive functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351(1346), 14631470. discussion 1470–1471 doi:10.1098/rstb.1996.0131 Google ScholarPubMed
Robbins, T.W., James, M., Owen, A.M., Sahakian, B.J., Lawrence, A.D., McInnes, L., … Rabbitt, P.M. (1998). A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: Implications for theories of executive functioning and cognitive aging. Cambridge Neuropsychological Test Automated Battery. Journal of the International Neuropsychological Society, 4(5), 474490.Google Scholar
Schmahmann, J.D., & Sherman, J.C. (1998). The cerebellar cognitive affective syndrome. Brain, 121(4), 561579. doi:10.1093/brain/121.4.561 Google Scholar
Schmitz-Hübsch, T., du Montcel, S.T., Baliko, L., Berciano, J., Boesch, S., Depondt, C., … Fancellu, R. (2006). Scale for the assessment and rating of ataxia: Development of a new clinical scale. Neurology, 66(11), 17171720. doi:10.1212/01.wnl.0000219042.60538.92 Google Scholar
Schöls, L., Bauer, P., Schmidt, T., Schulte, T., & Riess, O. (2004). Autosomal dominant cerebellar ataxias: Clinical features, genetics, and pathogenesis. The Lancet Neurology, 3(5), 291304. doi:10.1016/S1474-4422(04)00737-9 Google Scholar
Storey, E., Forrest, S.M., Shaw, J.H., Mitchell, P., & Gardner, R.J. (1999). Spinocerebellar ataxia type 2: Clinical features of a pedigree displaying prominent frontal-executive dysfunction. Archives of Neurology, 56(1), 4350.Google Scholar
Vaca-Palomares, I., Díaz, R., Rodríguez-Labrada, R., Medrano-Montero, J., Vázquez-Mojena, Y., Velázquez-Pérez, L., … Fernandez-Ruiz, J. (2013). Spinocerebellar ataxia Type 2 neurodegeneration differentially affects error-based and strategic-based visuomotor learning. Cerebellum, 12(6), 848855. doi:10.1007/s12311-013-0496-5 Google Scholar
Velázquez-Pérez, L., Rodríguez-Labrada, R., García-Rodríguez, J.C., Almaguer-Mederos, L.E., Cruz-Mariño, T., & Laffita-Mesa, J.M. (2011). A Comprehensive Review of Spinocerebellar Ataxia Type 2 in Cuba. Cerebellum, 10(2), 184198. doi:10.1007/s12311-011-0265-2 Google Scholar