Skip to main content Accessibility help
×
Home

Relationship between Cognitive Performance and Measures of Neurodegeneration among Hispanic and White Non-Hispanic Individuals with Normal Cognition, Mild Cognitive Impairment, and Dementia

  • Shanna L. Burke (a1), Miriam J. Rodriguez (a2), Warren Barker (a3), Maria T Greig-Custo (a3), Monica Rosselli (a4), David A. Loewenstein (a5) and Ranjan Duara (a3)...

Abstract

Objectives: The aim of this study was to determine the presence and severity of potential cultural and language bias in widely used cognitive and other assessment instruments, using structural MRI measures of neurodegeneration as biomarkers of disease stage and severity. Methods: Hispanic (n=75) and White non-Hispanic (WNH) (n=90) subjects were classified as cognitively normal (CN), amnestic mild cognitive impairment (aMCI) and mild dementia. Performance on the culture-fair and educationally fair Fuld Object Memory Evaluation (FOME) and Clinical Dementia Rating Scale (CDR) between Hispanics and WNHs was equivalent, in each diagnostic group. Volumetric and visually rated measures of the hippocampus entorhinal cortex, and inferior lateral ventricles (ILV) were measured on structural MRI scans for all subjects. A series of analyses of covariance, controlling for age, depression, and education, were conducted to compare the level of neurodegeneration on these MRI measures between Hispanics and WNHs in each diagnostic group. Results: Among both Hispanics and WNH groups there was a progressive decrease in volume of the hippocampus and entorhinal cortex, and an increase in volume of the ILV (indicating increasing atrophy in the regions surrounding the ILV) from CN to aMCI to mild dementia. For equivalent levels of performance on the FOME and CDR, WNHs had greater levels of neurodegeneration than did Hispanic subjects. Conclusions: Atrophy in medial temporal regions was found to be greater among WNH than Hispanic diagnostic groups, despite the lack of statistical differences in cognitive performance between these two ethnic groups. Presumably, unmeasured factors result in better cognitive performance among WNH than Hispanics for a given level of neurodegeneration. (JINS, 2018, 24, 176–187)

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Relationship between Cognitive Performance and Measures of Neurodegeneration among Hispanic and White Non-Hispanic Individuals with Normal Cognition, Mild Cognitive Impairment, and Dementia
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Relationship between Cognitive Performance and Measures of Neurodegeneration among Hispanic and White Non-Hispanic Individuals with Normal Cognition, Mild Cognitive Impairment, and Dementia
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Relationship between Cognitive Performance and Measures of Neurodegeneration among Hispanic and White Non-Hispanic Individuals with Normal Cognition, Mild Cognitive Impairment, and Dementia
      Available formats
      ×

Copyright

Corresponding author

Correspondence and reprint requests to: Shanna L. Burke, 11200 S.W. 8th Street, AHC5 564, Miami, FL 33199. E-mail: sburke@fiu.edu

References

Hide All
Alzheimer’s Association. (2016). Latest Alzheimer’s Facts and Figures. Retrieved from http://www.alz.org/facts/overview.asp
Ardila, A. (2013). The impact of culture on neuropsychological test performance. In: International handbook of cross-cultural neuropsychology (pp. 2345). New York, NY: Psychology Press.
Bell-McGinty, S., Butters, M.A., Meltzer, C.C., Greer, P.J., Reynolds, C.F. III, & Becker, J.T. (2002). Brain morphometric abnormalities in geriatric depression: Long-term neurobiological effects of illness duration. American Journal of Psychiatry, 159(8), 14241427. https://doi.org/10.1176/appi.ajp.159.8.1424
Boone, K.B., Victor, T.L., Wen, J., Razani, J., & Pontón, M. (2007). The association between neuropsychological scores and ethnicity, language, and acculturation variables in a large patient population. Archives of Clinical Neuropsychology, 22(3), 355365. https://doi.org/10.1016/j.acn.2007.01.010
Brooks, L.G., & Loewenstein, D.A. (2010). Assessing the progression of mild cognitive impairment to Alzheimer’s disease: Current trends and future directions. Alzheimer’s Research & Therapy, 2, 28. https://doi.org/10.1186/alzrt52
Brown, E.S., Rush, A.J., & McEwen, B.S. (1999). Hippocampal remodeling and damage by corticosteroids: Implications for mood disorders. Neuropsychopharmacology, 21(4), 474484. https://doi.org/10.1016/S0893-133X(99)00054-8
Butters, M.A., Young, J.B., Lopez, O., Aizenstein, H.J., Mulsant, B.H., Reynolds, C.F., & Becker, J.T. (2008). Pathways linking late-life depression to persistent cognitive impairment and dementia. Dialogues in Clinical Neuroscience, 10(3), 345.
Carmichael, O., Mungas, D., Beckett, L., Harvey, D., Tomaszewski Farias, S., Reed, B., & DeCarli, C. (2012). MRI predictors of cognitive change in a diverse and carefully characterized elderly population. Neurobiology of Aging, 33(1), 8395.e2. https://doi.org/10.1016/j.neurobiolaging.2010.01.021
Castora-Binkley, M., Peronto, C.L., Edwards, J.D., & Small, B.J. (2015). A longitudinal analysis of the influence of race on cognitive performance. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 70(4), 512518. https://doi.org/10.1093/geronb/gbt112
Chin, A.L., Negash, S., & Hamilton, R. (2011). Diversity and disparity in dementia: The impact of ethnoracial differences qin Alzheimer’s disease. Alzheimer Disease and Associated Disorders, 25(3), 187. https://doi.org/10.1097/WAD.0b013e318211c6c9.
DeCarli, C., Reed, B.R., Jagust, W., Martinez, O., Ortega, M., & Mungas, D. (2008). Brain behavior relationships among African Americans, whites, and Hispanics. Alzheimer Disease and Associated Disorders, 22(4), 382391.
Dickerson, B.C., Stoub, T.R., Shah, R.C., Sperling, R.A., Killiany, R.J., Albert, M.S., & deToledo-Morrell, L. (2011). Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology, 76(16), 13951402. https://doi.org/10.1212/WNL.0b013e3182166e96
Dong, C., Nabizadeh, N., Caunca, M., Cheung, Y.K., Rundek, T., Elkind, M.S., && Wright, C.B. (2015). Cognitive correlates of white matter lesion load and brain atrophy The Northern Manhattan Study. Neurology, 85(5), 441449.
Duara, R., Loewenstein, D.A., Potter, E., Appel, J., Greig, M.T., Urs, R., & Potter, H. (2008). Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology, 71(24), 19861992. https://doi.org/10.1212/01.wnl.0000336925.79704.9f
Duara, R., Loewenstein, D.A., Shen, Q., Barker, W., Varon, D., Greig, M.T., & Potter, H. (2013). The utility of age-specific cut-offs for visual rating of medial temporal atrophy in classifying Alzheimer’s disease, MCI and cognitively normal elderly subjects. Frontiers in Aging Neuroscience, 5, 47. https://doi.org/10.3389/fnagi.2013.00047
Espino, D.V., & Lewis, R. (1998). Dementia in older minority populations. Issues of prevalence, diagnosis, and treatment. The American Journal of Geriatric Psychiatry, 6(2 Suppl 1), S19S25.
Espino, D.V., Lichtenstein, M.J., Palmer, R.F., & Hazuda, H.P. (2004). Evaluation of the Mini-Mental State Examination’s internal consistency in a community-based sample of Mexican-American and European-American Elders: Results from the San Antonio Longitudinal Study of Aging. Journal of the American Geriatrics Society, 52(5), 822827.
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 11491160.
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175191.
Frisoni, G.B., Fox, N.C., Jack, C.R., Scheltens, P., & Thompson, P.M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6(2), 6777. https://doi.org/10.1038/nrneurol.2009.215
Frodl, T., Schaub, A., Banac, S., Charypar, M., Jäger, M., Kümmler, P., & Meisenzahl, E.M. (2006). Reduced hippocampal volume correlates with executive dysfunctioning in major depression. Journal of Psychiatry and Neuroscience, 31(5), 316325.
Gasquoine, P.G. (1999). Variables moderating cultural and ethnic differences in neuropsychological assessment: The case of Hispanic Americans. The Clinical Neuropsychologist, 13(3), 376383. https://doi.org/10.1076/clin.13.3.376.1735
Guerrero-Berroa, E., Kluger, A., Schmeidler, J., Sailor, K., Lizardi, H., Golomb, J., & Reisberg, B. (2014). Neuropsychological and neuropsychiatric prediction of global cognitive status among older Spanish-speaking Hispanics and English-speaking Whites. Journal of Geriatric Psychiatry and Neurology, 27(4), 266275. https://doi.org/10.1177/0891988714532020
Guerrero-Berroa, E., Schmeidler, J., Raventos, H., Valerio, D., Berri, M.S., Carrion-Baralt, J.R., & Sano, M. (2016). Neuropsychological test performance in cognitively normal Spanish-speaking nonagenarians with little education. Journal of Cross-Cultural Gerontology, 31, 129141.
Livney, M.G., Clark, C.M., Karlawish, J.H., Cartmell, S., Negrón, M., Nuñez-Lopez, J., & Arnold, S.E. (2011). Ethnoracial differences in the clinical characteristics of Alzheimer disease at initial presentation at an urban Alzheimer’s Disease Center. The American Journal of Geriatric Psychiatry, 19(5), 430439. https://doi.org/10.1097/JGP.0b013e3181f7d881
Loewenstein, D.A., Acevedo, A., Potter, E., Schinka, J.A., Raj, A., Greig, M.T., & Duara, R. (2009). Severity of medial temporal atrophy and amnestic mild cognitive impairment: Selecting type and number of memory tests. The American Journal of Geriatric Psychiatry, 17(12), 10501058. https://doi.org/10.1097/JGP.0b013e3181b7ef42
Loewenstein, D.A., Curiel, R.E., Duara, R., & Buschke, H. (2017). Novel cognitive paradigms for the detection of memory impairment in preclinical Alzheimer’s disease. Assessment, 1073191117691608. https://doi.org/10.1177/1073191117691608
Loewenstein, D.A., Curiel, R.E., Greig, M.T., Bauer, R.M., Rosado, M., Bowers, D., & Duara, R. (2016). A Novel cognitive stress test for the detection of preclinical Alzheimer disease: Discriminative properties and relation to amyloid load. The American Journal of Geriatric Psychiatry, 24(10), 804813. https://doi.org/10.1016/j.jagp.2016.02.056
Loewenstein, D.A., Duara, R., Argüelles, T., & Argüelles, S. (1995). Use of the Fuld Object-Memory Evaluation in the detection of mild dementia among Spanish- and English-speaking groups. The American Journal of Geriatric Psychiatry, 3(4), 300307. https://doi.org/http://dx.doi.org.ezproxy.fiu.edu/10.1097/00019442-199503040-00004
Mungas, D., Reed, B.R., Farias, S.T., & DeCarli, C. (2009). Age and education effects on relationships of cognitive test scores with brain structure in demographically diverse older persons. Psychology and Aging, 24(1), 116128. https://doi.org/10.1037/a0013421
O’Bryant, S.E., Humphreys, J.D., Schiffer, R.B., & Sutker, P.B. (2007). Presentation of Mexican Americans to a Memory Disorder Clinic. Journal of Psychopathology and Behavioral Assessment, 29(3), 137140. https://doi.org/http://dx.doi.org/10.1007/s10862-006-9042-9
O’Bryant, S.E., Waring, S.C., Cullum, C.M., Hall, J., Lacritz, L., Massman, P.J., & Doody, R. (2008). Staging dementia using Clinical Dementia Rating scale sum of boxes scores: A Texas Alzheimer’s Research Consortium Study. Archives of Neurology, 65(8), 10911095. https://doi.org/10.1001/archneur.65.8.1091
O’Bryant, S.E., Xiao, G., Edwards, M., Devous, M., Gupta, V.B., Martins, R., & Barber, R. (2013). Biomarkers of Alzheimer’s disease among Mexican Americans. Journal of Alzheimer’s Disease, 34(4), 841849. doi: https://doi.org/10.3233/JAD-122074
Ostrosky-Solis, F., Ramirez, M., & Ardila, A. (2004). Effects of culture and education on neuropsychological testing: A preliminary study with indigenous and nonindigenous population. Applied Neuropsychology, 11(4), 188195. https://doi.org/10.1207/s15324826an1104_3
Razani, J., Burciaga, J., Madore, M., & Wong, J. (2007). Effects of acculturation on tests of attention and information processing in an ethnically diverse group. Archives of Clinical Neuropsychology, 22(3), 333341. https://doi.org/10.1016/j.acn.2007.01.008.
Rideaux, T., Beaudreau, S.A., Fernandez, S., & O’Hara, R. (2012). Utility of the abbreviated Fuld Object Memory Evaluation and MMSE for detection of dementia and cognitive impairment not dementia in diverse ethnic groups. Journal of Alzheimer’s Disease, 31(2), 371386. https://doi.org/10.3233/JAD-2012-112180
Rosselli, M., & Ardila, A. (2003). The impact of culture and education on non-verbal neuropsychological measurements: A critical review. Brain and Cognition, 52(3), 326333.
Sano, M., Mackell, J.A., Ponton, M., Ferreira, P., Wilson, J., Pawluczyk, S., & Thal, L.J. (1997). The Spanish Instrument Protocol: Design and implementation of a study to evaluate treatment efficacy Instruments for Spanish-speaking patients with Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. Alzheimer Disease and Associated Disorders, 11(Suppl 2), S57S64.
Sawyer, K., Corsentino, E., Sachs-Ericsson, N., & Steffens, D.C. (2012). Depression, hippocampal volume changes, and cognitive decline in a clinical sample of older depressed outpatients and non-depressed controls. Aging & Mental Health, 16(6), 753762. https://doi.org/10.1080/13607863.2012.678478
Scahill, R.I., Frost, C., Jenkins, R., Whitwell, J.L., Rossor, M.N., & Fox, N.C. (2003). longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Archives of Neurology, 60(7), 989994.
Schweizer, T.A., Ware, J., Fischer, C.E., Craik, F.I.M., & Bialystok, E. (2012). Bilingualism as a contributor to cognitive reserve: Evidence from brain atrophy in Alzheimer’s disease. Cortex, 48(8), 991996.
Sheline, Y.I., Wang, P.W., Gado, M.H., Csernansky, J.G., & Vannier, M.W. (1996). Hippocampal atrophy in recurrent major depression. Proceedings of the National Academy of Sciences of the United States of America, 93(9), 39083913.
Shen, Q., Loewenstein, D.A., Potter, E., Zhao, W., Appel, J., Greig, M.T., & Duara, R. (2011). Volumetric and visual rating of magnetic resonance imaging scans in the diagnosis of amnestic mild cognitive impairment and Alzheimer’s disease. Alzheimer’s & Dementia, 7(4), e101e108. https://doi.org/10.1016/j.jalz.2010.07.002
Stern, Y., Gurland, B., Tatemichi, T.K., Tang, M.X., Wilder, D., & Mayeux, R. (1994). Influence of Education and Occupation on the Incidence of Alzheimer’s Disease. JAMA, 271(13), 10041010. https://doi.org/10.1001/jama.1994.03510370056032
Tang, M.X., Cross, P., Andrews, H., Jacobs, D.M., Small, S., Bell, K., & Mayeux, R. (2001). Incidence of AD in African-Americans, Caribbean Hispanics, and Caucasians in Northern Manhattan. Neurology, 56(1), 4956.
Tappen, R.M., Rosselli, M., & Engstrom, G. (2010). Evaluation of the functional activities questionnaire (FAQ) in cognitive screening across four American ethnic groups. The Clinical Neuropsychologist, 24(4), 646661.
Uzzell, B.P., Ponton, M., & Ardila, A. (2013). International Handbook of Cross-Cultural Neuropsychology. New York, NY: Psychology Press.
Uzzell, B.P., Pontón, M.O., & Ardila, A. (2007). International Handbook of Cross-Cultural Neuropsychology. Mahwah, NJ: Lawrence Erlbaum Associates.
Varon, D., Loewenstein, D.A., Potter, E., Greig, M.T., Agron, J., Shen, Q., & Duara, R. (2011). Minimal atrophy of the entorhinal cortex and hippocampus: Progression of cognitive impairment. Dementia and Geriatric Cognitive Disorders, 31(4), 276283. https://doi.org/10.1159/000324711
Vemuri, P., Gunter, J.L., Senjem, M.L., Whitwell, J.L., Kantarci, K., Knopman, D.S., & Jack, C.R. Jr. (2008). Alzheimer’s disease diagnosis in individual subjects using structural MR images: Validation studies. NeuroImage, 39(3), 11861197. https://doi.org/10.1016/j.neuroimage.2007.09.073
Videbech, P., & Ravnkilde, B. (2004). Hippocampal volume and depression: A meta-analysis of MRI studies. The American Journal of Psychiatry, 161(11), 19571966. https://doi.org/10.1176/appi.ajp.161.11.1957
Washington University Alzheimer’s Disease Research Center. (1999). Global Clinical Dementia Rating (CDR) Based on CDR Box Scores. Retrieved from https://www.alz.washington.edu/cdrnacc.html
Yesavage, J.A., Brink, T.L., Rose, T.L., Lum, O., Huang, V., Adey, M., && Leirer, V.O. (1982). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17(1), 3749. https://doi.org/10.1016/0022-3956(82)90033-4
Zahodne, L.B., Manly, J.J., Narkhede, A., Griffith, E.Y., DeCarli, C., Schupf, N.S., & Brickman, A.M. (2015). Structural MRI predictors of late-life cognition differ across African Americans, Hispanics, and Whites. Current Alzheimer Research, 12(7), 632639.
Zahodne, L.B., Schofield, P.W., Farrell, M.T., Stern, Y., & Manly, J.J. (2014). Bilingualism does not alter cognitive decline or dementia risk among Spanish-speaking immigrants. Neuropsychology, 28(2), 238246. https://doi.org/10.1037/neu0000014

Keywords

Relationship between Cognitive Performance and Measures of Neurodegeneration among Hispanic and White Non-Hispanic Individuals with Normal Cognition, Mild Cognitive Impairment, and Dementia

  • Shanna L. Burke (a1), Miriam J. Rodriguez (a2), Warren Barker (a3), Maria T Greig-Custo (a3), Monica Rosselli (a4), David A. Loewenstein (a5) and Ranjan Duara (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed