Skip to main content Accessibility help

Motor Contingency Learning and Infants with Spina Bifida

  • Heather B. Taylor (a1) (a2), Marcia A. Barnes (a1), Susan H. Landry (a1), Paul Swank (a1), Jack M. Fletcher (a3) and Furong Huang (a1)...


Infants with Spina Bifida (SB) were compared to typically developing infants (TD) using a conjugate reinforcement paradigm at 6 months-of-age (n = 98) to evaluate learning, and retention of a sensory-motor contingency. Analyses evaluated infant arm-waving rates at baseline (wrist not tethered to mobile), during acquisition of the sensory-motor contingency (wrist tethered), and immediately after the acquisition phase and then after a delay (wrist not tethered), controlling for arm reaching ability, gestational age, and socioeconomic status. Although both groups responded to the contingency with increased arm-waving from baseline to acquisition, 15% to 29% fewer infants with SB than TD were found to learn the contingency depending on the criterion used to determine contingency learning. In addition, infants with SB who had learned the contingency had more difficulty retaining the contingency over time when sensory feedback was absent. The findings suggest that infants with SB do not learn motor contingencies as easily or at the same rate as TD infants, and are more likely to decrease motor responses when sensory feedback is absent. Results are discussed with reference to research on contingency learning in infants with and without neurodevelopmental disorders, and with reference to motor learning in school-age children with SB. (JINS, 2013, 19, 1–10)


Corresponding author

Correspondence and reprint requests to: Heather B. Taylor, Department of Pediatrics, University of Texas Health Science Center at Houston, 7000 Fannin, Suite 2300, Houston, TX 77030. E-mail:


Hide All
Angulo-Kinsler, R.M. (1997). Exploration and control of leg movements in infants. Unpublished Ph.D. dissertation, Indiana University.
Bayley, N. (1993). Bayley Scales of Infant Development, Second edition. San Antonio, TX: The Psychological Corporation.
Bhatt, R.S., Rovee-Collier, C., Weiner, S. (1994). Developmental changes in the interface between perception and memory retrieval. Developmental Psychology, 30, 151162.
Brennan, R.L. (1983). Elements of generalizability theory. Iowa City, IA: ACT Publications.
Brewer, V.B., Fletcher, J.M., Hiscock, M., Davidson, K.C. (2001). Attention processes in children with shunted hydrocephalus versus attention deficit-hyperactivity disorder. Neuropsychology, 15(2), 185198.
Chakraborty, A., Crimmins, D., Hayward, D., Thompson, D. (2008). Toward reducing shunt placement rates in patients with myelomeningocele. Journal of Neurosurgery. Pediatrics, 1, 361365.
Chandler, L.S., Andrews, M.S., Swanson, M.W. (1980). Movement assessment of infants: A manual. Rolling Bay, WA: Chandler, Andrews, and Swanson.
Chen, Y., Fetters, L., Holt, K.G., Saltzman, E. (2002). Making the mobile move: Constraining task and environment. Infant Behavior and Development, 25, 195220.
Colombo, J. (2001). The development of visual attention in infancy. Annual Review of Psychology, 52, 337367.
Colvin, A.N., Yeates, K.O., Enrile, B.G., Coury, D.L. (2003). Motor adaptation in children with myelomeningocele: Comparison to children with ADHD and healthy siblings. Journal of the International Neuropsychological Society, 9, 642652.
Cronbach, L.J., Gleser, G.C., Nanda, H., Rajaratnam, N. (1972). The dependability of behavioral measurement: Theory of generalizability for scores and profiles. New York: John Wiley and Sons, Inc.
Davis, B.E., Daley, C.M., Shurtleff, D.B., Duguay, S., Seidel, K., Loeser, J.D., Ellenbogan, R.G. (2005). Long-term survival of individuals with myelomeningocele. Pediatric Neurosurgery, 41, 186191.
Del Bigio, M.R. (2010). Neuropathology and structureal changes in hydrocephalus. Developmental Disabilities Research Reviews, 16, 1622.
Dennis, M., Barnes, H. (2010). The cognitive phenotype of spina bifida meningomyelocele. Developmental Disabilities Research Review, 16(1), 3139.
Dennis, M., Edelstein, K., Copeland, K., Frederick, J., Francis, D.J., Hetherington, R., Fletcher, J.M. (2005a). Covert orienting to exogenous and endogenous cues in children with spina bifida. Neuropsychologia, 43, 976987.
Dennis, M., Edelstein, K., Copeland, K., Frederick, J.A., Francis, D.J., Hetherington, R., Fletcher, J.M. (2005b). Space-based inhibition of return in children with spina bifida. Neuropsychology, 19(4), 456465.
Dennis, M., Edelstein, K., Hetherington, R., Copeland, K., Frederick, J., Blaser, S.E., Fletcher, J.M. (2004). Neurobiology of perceptual and motor timing in children with spina bifida in relation to cerebellar volume. Brain, 127, 12921301.
Dennis, M., Jewell, D., Edelstein, K., Brandt, M., Hetherington, R., Blaser, S.E., Fletcher, J.M. (2006). Motor learning in children with spina bifida: Intact learning and performance on a ballistic task. Journal of International Neuropsychological Society, 12, 598608.
Dennis, M., Landry, S.H., Barnes, M., Fletcher, J.M. (2006). A model of neurocognitive function in spina bifida over the lifespan. Journal of International Neuropsychological Society, 12(2), 285296.
Dennis, M., Salman, M.S., Juranek, J., Fletcher, J.M. (2010). Cerebellar motor function in spina bifida meningomyelocele. Cerebellum, 9, 484498.
Edelstein, K., Dennis, M., Copeland, K., Frederick, J., Francis, D., Hetherington, R., Fletcher, J.M. (2004). Motor learning in children with spina bifida: Dissociation between performance level and acquisition rate. Journal of the International Neuropsychological Society, 10(6), 877887.
Fletcher, J.M., Northrup, H., Landry, S.H., Dennis, M., Barnes, M.A., Blaser, S.E., Francis, D.J. (2004). Spina bifida: Genes, brain, and development. International Review of Research in Mental Retardation, 29, 63117.
Gekoski, M.J., Fagen, J.W., Pearlman, M.A. (1984). Early learning and memory in the preterm infant. Infant Behavior & Development, 7, 267275.
Haley, D.W., Grunau, R.E., Oberlander, T.F., Weinberg, J. (2008). Contingency learning and reactivity in preterm and full-term infants at 3 months. Infancy, 13(6), 570595.
Haley, D.W., Weinberg, J., Grunau, R.E. (2006). Cortisol, contingency learning, and memory in preterm and fullterm infants. Psychoneuroendocrinology, 31, 108117.
Hartshorn, K., Rovee-Collier, C. (2003). Does infant memory expression reflect age at encoding or age at retrieval? Developmental Psychobiology, 41, 281291.
Heathcock, J.C., Bhat, A.N., Lobo, M.A., Galloway, J.C. (2004). The performance of infants born preterm and full-term in the mobile paradigm: Learning and memory. Physical Therapy, 84, 808821.
Heathcock, J.C., Bhat, A.N., Lobo, M.A., Galloway, J.C. (2005). The relative kicking frequency of infants born full-term and preterm during learning and short-term and long-term memory periods of the mobile paradigm. Physical Therapy, 85, 818.
Hollingshead, A.B. (1975). Four factor index of social status. New Haven, CT: Department of Sociology, Yale University.
Liptak, G.S., Batshaw, M.L. (2002). Neural tube defects children with disabilities (Vol. 5, pp. 467492). Washington, DC: Paul H. Brookes Publishing Co.
Lomax-Bream, L., Barnes, M., Copeland, K., Taylor, H.B., Landry, S.H. (2007). The impact of spina bifida on development across the first three years. Developmental Neuropsychology, 31(1), 120.
Lomax-Bream, L., Taylor, H.B., Landry, S.H., Barnes, M., Fletcher, J.M., Swank, P. (2007). Role of early parenting and motor skills on development in children with spina bifida. Journal of Applied Developmental Psychology, 28(3), 250263.
Ohr, P.S., Fagan, J.W. (1991). Conditioning and long-term memory in three-month-old infants with Down syndrome. American Journal on Mental Retardation, 96(2), 151162.
Ramey, C.T., Heiger, L., Klisz, D. (1972). Synchronous reinforcement of vocal responses in failure-to-thrive infants. Child Development, 43, 14491455.
Rovee, C.K., Rovee, D.T. (1969). Conjugate reinforcement of infant exploratory behavior. Journal of Experimental Child Psychology, 8, 3339.
Rovee-Collier, C. (1997). Dissociations in infant memory: Rethinking the development of implicit and explicit memory. Psychological Review, 104, 467498.
Rovee-Collier, C. (1999). The development of infant memory. Current Directions in Psychological Science, 8, 8085.
Rovee-Collier, C., Giles, A. (2010). Why a neuromaturational model of memory fails: Exuberant learning in early infancy. Behavioral Processes, 83(2), 197206.
Rovee-Collier, C., Sullivan, M.W., Enright, M., Lucas, D., Fagan, J.W. (1980). Reactivation of infant memory. Science, 208, 11591161.
Shavelson, R.J., Webb, N.M. (1991). Generalizability theory: A primer. Newbury Park, CA: Sage.
Sullivan, M.W., Lewis, M. (2003). Contextual determinants of anger and other negative expressions in young infants. Developmental Psychology, 39, 693705.
Talamonti, G., D'Aliberti, G., Collice, M. (2007). Myelomeningocele: Long-term neurosurgical treatment and follow-up in 202 patients. Journal of Neurosurgery, 107(5 Suppl), 368386.
Taylor, H.B., Landry, S., Barnes, M., Swank, P.R., Cohen, L., Fletcher, J.M. (2010). Early information processing among infants with and without Spina Bifida. Infant Behavior and Development, 33(4), 365372. doi:10.1016/j.infbeh.2010.03.005
Thelen, E. (1994). Three-month-old infants can learn task-specific patterns of interlimb coordination. Psychological Science, 5, 280285.
Thelen, E., Smith, L.B. (1995). A dynamic systems approach to the development of cognition and action. Cambridge, MA: MIT press.
Thelen, E., Ulrich, B.D. (1991). Hidden skills. Monographs of the Society for Research in Child Development, 56(223), 5989.
Timmons, C.R. (1994). Associative links between discrete memories in infancy. Infant Behavior and Development, 17, 431445.
von Hofsten, C. (2004). An action perspective on motor development. Trends in Cognitive Sciences, 8, 266272.
Wantanabe, H., Taga, G. (2009). Flexibility in infant actions during arm- and leg-based learning in a mobile paradigm. Infant Behavior and Development, 32, 7990.
Watanabe, H., Taga, G. (2006). General to specific development of movement patterns and memory for contingency between actions and events in young infants. Infant Behavior and Development, 29, 402422.
Wills, K.E. (1993). Neuropsychological functioning in children with spina bifida and/or hydrocephalus. Journal of Clinical and Child Psychology, 22(2), 247265.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed