Skip to main content Accessibility help

Measuring Cortical Connectivity in Alzheimer’s Disease as a Brain Neural Network Pathology: Toward Clinical Applications

  • Stefan Teipel (a1) (a2), Michel J. Grothe (a2), Juan Zhou (a3), Jorge Sepulcre (a4), Martin Dyrba (a2), Christian Sorg (a5) and Claudio Babiloni (a6)...


Objectives: The objective was to review the literature on diffusion tensor imaging as well as resting-state functional magnetic resonance imaging and electroencephalography (EEG) to unveil neuroanatomical and neurophysiological substrates of Alzheimer’s disease (AD) as a brain neural network pathology affecting structural and functional cortical connectivity underlying human cognition. Methods: We reviewed papers registered in PubMed and other scientific repositories on the use of these techniques in amnesic mild cognitive impairment (MCI) and clinically mild AD dementia patients compared to cognitively intact elderly individuals (Controls). Results: Hundreds of peer-reviewed (cross-sectional and longitudinal) papers have shown in patients with MCI and mild AD compared to Controls (1) impairment of callosal (splenium), thalamic, and anterior–posterior white matter bundles; (2) reduced correlation of resting state blood oxygen level-dependent activity across several intrinsic brain circuits including default mode and attention-related networks; and (3) abnormal power and functional coupling of resting state cortical EEG rhythms. Clinical applications of these measures are still limited. Conclusions: Structural and functional (in vivo) cortical connectivity measures represent a reliable marker of cerebral reserve capacity and should be used to predict and monitor the evolution of AD and its relative impact on cognitive domains in pre-clinical, prodromal, and dementia stages of AD. (JINS, 2016, 22, 138–163)

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Measuring Cortical Connectivity in Alzheimer’s Disease as a Brain Neural Network Pathology: Toward Clinical Applications
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Measuring Cortical Connectivity in Alzheimer’s Disease as a Brain Neural Network Pathology: Toward Clinical Applications
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Measuring Cortical Connectivity in Alzheimer’s Disease as a Brain Neural Network Pathology: Toward Clinical Applications
      Available formats


Corresponding author

Correspondence and reprint requests to: Stefan Teipel, DZNE, German Center for Neurodegenerative Diseases, Gehlsheimer Str. 20, 18147 Rostock. E-mail:


Hide All
Acosta-Cabronero, J., Williams, G.B., Pengas, G., & Nestor, P.J. (2010). Absolute diffusivities define the landscape of white matter degeneration in Alzheimer’s disease. Brain, 133(Pt 2), 529539.
Adriaanse, S.M., Sanz-Arigita, E.J., Binnewijzend, M.A., Ossenkoppele, R., Tolboom, N., van Assema, D.M., & van Berckel, B.N. (2014). Amyloid and its association with default network integrity in Alzheimer’s disease. Human Brain Mapping, 35(3), 779791.
Agosta, F., Pievani, M., Geroldi, C., Copetti, M., Frisoni, G.B., & Filippi, M. (2012). Resting state fMRI in Alzheimer’s disease: Beyond the default mode network. Neurobiology of Aging, 33(8), 15641578.
Agosta, F., Rocca, M.A., Pagani, E., Absinta, M., Magnani, G., Marcone, A., & Filippi, M. (2010). Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease. Human Brain Mapping, 31(4), 515525.
Ahmed, Z., Cooper, J., Murray, T.K., Garn, K., McNaughton, E., Clarke, H., & O’Neill, M.J. (2014). A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: The pattern of spread is determined by connectivity, not proximity. Acta Neuropathologica, 127(5), 667683.
Arenaza-Urquijo, E.M., Landeau, B., La Joie, R., Mevel, K., Mezenge, F., Perrotin, A., & Chetelat, G. (2013). Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy elders. Neuroimage, 83C, 450457.
Babiloni, C., Carducci, F., Lizio, R., Vecchio, F., Baglieri, A., Bernardini, S., & Frisoni, G.B. (2013). Resting state cortical electroencephalographic rhythms are related to gray matter volume in subjects with mild cognitive impairment and Alzheimer’s disease. Human Brain Mapping, 34(6), 14271446.
Babiloni, C., Del Percio, C., Boccardi, M., Lizio, R., Lopez, S., Carducci, F., & Frisoni, G.B. (2015). Occipital sources of resting-state alpha rhythms are related to local gray matter density in subjects with amnesic mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 36(2), 556570.
Babiloni, C., Ferri, R., Binetti, G., Vecchio, F., Frisoni, G.B., Lanuzza, B., & Rossini, P.M. (2009). Directionality of EEG synchronization in Alzheimer’s disease subjects. Neurobiology of Aging, 30(1), 93102.
Babiloni, C., Frisoni, G., Steriade, M., Bresciani, L., Binetti, G., Del Percio, C., & Rossini, P.M. (2006). Frontal white matter volume and delta EEG sources negatively correlate in awake subjects with mild cognitive impairment and Alzheimer’s disease. Clinical Neurophysiology, 117(5), 11131129.
Babiloni, C., Frisoni, G.B., Pievani, M., Vecchio, F., Lizio, R., Buttiglione, M., & Rossini, P.M. (2009). Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. Neuroimage, 44(1), 123135.
Babiloni, C., Pievani, M., Vecchio, F., Geroldi, C., Eusebi, F., Fracassi, C., & Frisoni, G.B. (2009). White-matter lesions along the cholinergic tracts are related to cortical sources of EEG rhythms in amnesic mild cognitive impairment. Human Brain Mapping, 30(5), 14311443.
Bai, F., Liao, W., Yue, C., Pu, M., Shi, Y., Yu, H., & Zhang, Z. (2014). Genetics pathway-based imaging approaches in Chinese Han population with Alzheimer’s disease risk. Brain Structure & Function. [Epub ahead of print].
Bai, F., Watson, D.R., Shi, Y., Wang, Y., Yue, C., Yuhuan, Teng, & Zhang, Z. (2011). Specifically progressive deficits of brain functional marker in amnestic type mild cognitive impairment. PLoS One, 6(9), e24271.
Bai, F., Watson, D.R., Yu, H., Shi, Y., Yuan, Y., & Zhang, Z. (2009). Abnormal resting-state functional connectivity of posterior cingulate cortex in amnestic type mild cognitive impairment. Brain Research, 1302, 167174.
Balachandar, R., John, J.P., Saini, J., Kumar, K.J., Joshi, H., Sadanand, S., & Bharath, S. (2015). A study of structural and functional connectivity in early Alzheimer’s disease using rest fMRI and diffusion tensor imaging. International Journal of Geriatric Psychiatry, 30(5), 497504.
Balthazar, M.L., Pereira, F.R., Lopes, T.M., da Silva, E.L., Coan, A.C., Campos, B.M., & Cendes, F. (2013). Neuropsychiatric symptoms in Alzheimer’s disease are related to functional connectivity alterations in the salience network. Human Brain Mapping.
Basser, P.J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259267.
Beckmann, C.F., DeLuca, M., Devlin, J.T., & Smith, S.M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1457), 10011013.
Bendlin, B.B., Carlsson, C.M., Johnson, S.C., Zetterberg, H., Blennow, K., Willette, A.A., & Sager, M.A. (2012). CSF T-Tau/Abeta42 predicts white matter microstructure in healthy adults at risk for Alzheimer’s disease. PLoS One, 7(6), e37720.
Bendlin, B.B., Ries, M.L., Canu, E., Sodhi, A., Lazar, M., Alexander, A.L., & Johnson, S.C. (2010). White matter is altered with parental family history of Alzheimer’s disease. Alzheimers & Dementia, 6(5), 394403.
Binnewijzend, M.A., Schoonheim, M.M., Sanz-Arigita, E., Wink, A.M., van der Flier, W.M., Tolboom, N., & Barkhof, F. (2012). Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment. Neurobiology of Aging, 33(9), 20182028.
Biswal, B., Yetkin, F.Z., Haughton, V.M., & Hyde, J.S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537541.
Biswal, B.B., Mennes, M., Zuo, X.N., Gohel, S., Kelly, C., Smith, S.M., & Milham, M.P. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 47344739.
Bosch, B., Arenaza-Urquijo, E.M., Rami, L., Sala-Llonch, R., Junque, C., Sole-Padulles, C., & Bartres-Faz, D. (2012). Multiple DTI index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance. Neurobiology of Aging, 33(1), 6174.
Bozoki, A.C., Korolev, I.O., Davis, N.C., Hoisington, L.A., & Berger, K.L. (2012). Disruption of limbic white matter pathways in mild cognitive impairment and Alzheimer’s disease: A DTI/FDG-PET study. Human Brain Mapping, 33(8), 17921802.
Bozzali, M., Dowling, C., Serra, L., Spano, B., Torso, M., Marra, C., & Cercignani, M. (2014). The impact of cognitive reserve on brain functional connectivity in Alzheimer’s Disease. Journal of Alzheimers Disease, 44, 243250.
Bozzali, M., Falini, A., Franceschi, M., Cercignani, M., Zuffi, M., Scotti, G., & Filippi, M. (2002). White matter damage in Alzheimer’s disease assessed in vivo using diffusion tensor magnetic resonance imaging. Journal of Neurology, Neurosurgery, and Psychiatry, 72(6), 742746.
Bozzali, M., Franceschi, M., Falini, A., Pontesilli, S., Cercignani, M., Magnani, G., & Filippi, M. (2001). Quantification of tissue damage in AD using diffusion tensor and magnetization transfer MRI. Neurology, 57(6), 11351137.
Braak, H., & Del Tredici, K. (2011). Alzheimer’s pathogenesis: Is there neuron-to-neuron propagation? Acta Neuropathologica, 121(5), 589595.
Braskie, M.N., Jahanshad, N., Stein, J.L., Barysheva, M., Johnson, K., McMahon, K.L., & Thompson, P.M. (2012). Relationship of a variant in the NTRK1 gene to white matter microstructure in young adults. The Journal of Neuroscience, 32(17), 59645972.
Braskie, M.N., Jahanshad, N., Stein, J.L., Barysheva, M., McMahon, K.L., de Zubicaray, G.I., & Thompson, P.M. (2011). Common Alzheimer’s disease risk variant within the CLU gene affects white matter microstructure in young adults. The Journal of Neuroscience, 31(18), 67646770.
Brier, M.R., Thomas, J.B., Snyder, A.Z., Benzinger, T.L., Zhang, D., Raichle, M.E., & Ances, B.M. (2012). Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression. The Journal of Neuroscience, 32(26), 88908899.
Brown, J.A., Terashima, K.H., Burggren, A.C., Ercoli, L.M., Miller, K.J., Small, G.W., & Bookheimer, S.Y. (2011). Brain network local interconnectivity loss in aging APOE-4 allele carriers. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 2076020765.
Buckner, R.L., Andrews-Hanna, J.R., & Schacter, D.L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138.
Buckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden, T., & Johnson, K.A. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. The Journal of Neuroscience, 29(6), 18601873.
Buckner, R.L., Snyder, A.Z., Shannon, B.J., LaRossa, G., Sachs, R., Fotenos, A.F., & Mintun, M.A. (2005). Molecular, structural, and functional characterization of Alzheimer’s disease: Evidence for a relationship between default activity, amyloid, and memory. The Journal of Neuroscience, 25(34), 77097717.
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10(3), 186198.
Chao, L.L., Decarli, C., Kriger, S., Truran, D., Zhang, Y., Laxamana, J., & Weiner, M.W. (2013). Associations between white matter hyperintensities and beta amyloid on integrity of projection, association, and limbic fiber tracts measured with diffusion tensor MRI. PLoS One, 8(6), e65175.
Chen, T.F., Chen, Y.F., Cheng, T.W., Hua, M.S., Liu, H.M., & Chiu, M.J. (2009). Executive dysfunction and periventricular diffusion tensor changes in amnesic mild cognitive impairment and early Alzheimer’s disease. Human Brain Mapping, 30(11), 38263836.
Chen, Y., Chen, K., Zhang, J., Li, X., Shu, N., Wang, J., & Reiman, E.M. (2014). Disrupted functional and structural networks in cognitively normal elderly subjects with the APOE varepsilon4 Allele. Neuropsychopharmacology, 40, 11811191.
Chetelat, G., Desgranges, B., De La Sayette, V., Viader, F., Eustache, F., & Baron, J.C. (2002). Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport, 13(15), 19391943.
Chetelat, G., Landeau, B., Salmon, E., Yakushev, I., Bahri, M.A., Mezenge, F., & Fellgiebel, A. (2013). Relationships between brain metabolism decrease in normal aging and changes in structural and functional connectivity. Neuroimage, 76, 167177.
Choo, I.H., Lee, D.Y., Youn, J.C., Jhoo, J.H., Kim, K.W., Lee, D.S., & Woo, J.I. (2007). Topographic patterns of brain functional impairment progression according to clinical severity staging in 116 Alzheimer disease patients: FDG-PET study. Alzheimer Disease and Associated Disorders, 21(2), 7784.
Cirrito, J.R., Kang, J.E., Lee, J., Stewart, F.R., Verges, D.K., Silverio, L.M., & Holtzman, D.M. (2008). Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron, 58(1), 4251.
Cirrito, J.R., Yamada, K.A., Finn, M.B., Sloviter, R.S., Bales, K.R., May, P.C., & Holtzman, D.M. (2005). Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron, 48(6), 913922.
Corbetta, M., & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3(3), 201215.
Cross, D.J., Anzai, Y., Petrie, E.C., Martin, N., Richards, T.L., Maravilla, K.R., & Minoshima, S. (2013). Loss of olfactory tract integrity affects cortical metabolism in the brain and olfactory regions in aging and mild cognitive impairment. Journal of Nuclear Medicine, 54(8), 12781284.
Crossley, N.A., Mechelli, A., Scott, J., Carletti, F., Fox, P.T., McGuire, P., & Bullmore, E.T. (2014). The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain, 137(Pt 8), 23822395.
Crossley, N.A., Mechelli, A., Vertes, P.E., Winton-Brown, T.T., Patel, A.X., Ginestet, C.E., & Bullmore, E.T. (2013). Cognitive relevance of the community structure of the human brain functional coactivation network. Proceedings of the National Academy of Sciences of the United States of America, 110(28), 1158311588.
Daianu, M., Dennis, E.L., Jahanshad, N., Nir, T.M., Toga, A.W., Jack, C.R., & Thompson, P.M. (2013). Alzheimer’s disease disrupts rich club organization in brain connectivity networks. IEEE International Symposium on Biomedical Imaging, 2013, 266269.
Daianu, M., Jahanshad, N., Nir, T.M., Jack, C.R., Weiner, M.W., Bernstein, M.A., & Thompson, P.M. (2015). Rich club analysis in the Alzheimer’s disease connectome reveals a relatively undisturbed structural core network. Human Brain Mapping, 36(8), 30873103.
Damoiseaux, J.S., & Greicius, M.D. (2009). Greater than the sum of its parts: A review of studies combining structural connectivity and resting-state functional connectivity. Brain Structure & Function, 213(6), 525533.
Damoiseaux, J.S., Rombouts, S.A., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., & Beckmann, C.F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 1384813853.
Damoiseaux, J.S., Seeley, W.W., Zhou, J., Shirer, W.R., Coppola, G., Karydas, A., & Greicius, M.D. (2012). Gender modulates the APOE {varepsilon}4 effect in healthy older adults: Convergent evidence from functional brain connectivity and spinal fluid Tau levels. The Journal of Neuroscience, 32(24), 82548262.
Daunizeau, J., David, O., & Stephan, K.E. (2011). Dynamic causal modelling: A critical review of the biophysical and statistical foundations. Neuroimage, 58(2), 312322.
Dauwels, J., Vialatte, F., Musha, T., & Cichocki, A. (2010). A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. Neuroimage, 49(1), 668693.
Deco, G., & Corbetta, M. (2011). The dynamical balance of the brain at rest. The Neuroscientist, 17(1), 107123.
Dell’Acqua, F., & Catani, M. (2012). Structural human brain networks: Hot topics in diffusion tractography. Current Opinion in Neurology, 25(4), 375383.
Dennis, E.L., & Thompson, P.M. (2014). Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychology Review, 24(1), 4962.
Doria, V., Beckmann, C.F., Arichi, T., Merchant, N., Groppo, M., Turkheimer, F.E., & Edwards, A.D. (2010). Emergence of resting state networks in the preterm human brain. Proceedings of the National Academy of Sciences of the United States of America, 107(46), 2001520020.
Douaud, G., Jbabdi, S., Behrens, T.E., Menke, R.A., Gass, A., Monsch, A.U., & Smith, S. (2011). DTI measures in crossing-fibre areas: Increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage, 55(3), 880890.
Douaud, G., Menke, R.A., Gass, A., Monsch, A.U., Rao, A., Whitcher, B., & Smith, S. (2013). Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer’s disease. The Journal of Neuroscience, 33(5), 21472155.
Drzezga, A., Becker, J.A., Van Dijk, K.R., Sreenivasan, A., Talukdar, T., Sullivan, C., & Sperling, R.A. (2011). Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain, 134(Pt 6), 16351646.
Dubois, B., Feldman, H.H., Jacova, C., Hampel, H., Molinuevo, J.L., Blennow, K., & Cummings, J.L. (2014). Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. The Lancet. Neurology, 13(6), 614629.
Dyrba, M., Barkhof, F., Fellgiebel, A., Filippi, M., Hausner, L., Hauenstein, K., & Teipel, S.J. (2015). Predicting prodromal Alzheimer’s disease in subjects with mild cognitive impairment using machine learning classification of multimodal multicenter diffusion-tensor and magnetic resonance imaging data. J Neuroimaging, 25, 738747.
Dyrba, M., Ewers, M., Wegrzyn, M., Kilimann, I., Plant, C., Oswald, A., & Teipel, S.J. (2013). Robust automated detection of microstructural white matter degeneration in Alzheimer’s disease using machine learning classification of multicenter DTI data. PLoS One, 8(5), e64925.
Dyrba, M., Grothe, M., Kirste, T., & Teipel, S.J. (2015). Multimodal analysis of functional and structural disconnection in Alzheimer’s disease using multiple kernel SVM. Human Brain Mapping, 36(6), 21182131.
Dziewczapolski, G., Glogowski, C.M., Masliah, E., & Heinemann, S.F. (2009). Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. The Journal of Neuroscience, 29(27), 88058815.
Fellgiebel, A., Dellani, P.R., Greverus, D., Scheurich, A., Stoeter, P., & Muller, M.J. (2006). Predicting conversion to dementia in mild cognitive impairment by volumetric and diffusivity measurements of the hippocampus. Psychiatry Research, 146(3), 283287.
Fellgiebel, A., Muller, M.J., Wille, P., Dellani, P.R., Scheurich, A., Schmidt, L.G., & Stoeter, P. (2005). Color-coded diffusion-tensor-imaging of posterior cingulate fiber tracts in mild cognitive impairment. Neurobiology of Aging, 26(8), 11931198.
Fellgiebel, A., Schermuly, I., Gerhard, A., Keller, I., Albrecht, J., Weibrich, C., & Stoeter, P. (2008). Functional relevant loss of long association fibre tracts integrity in early Alzheimer’s disease. Neuropsychologia, 46(6), 16981706.
Fischer, F.U., Scheurich, A., Wegrzyn, M., Schermuly, I., Bokde, A.L., Kloppel, S., & Fellgiebel, A. (2012). Automated tractography of the cingulate bundle in Alzheimer’s disease: A multicenter DTI study. Journal of Magnetic Resonance Imaging, 36, 8491.
Fischer, F.U., Wolf, D., Scheurich, A., & Fellgiebel, A. (2015). Altered whole-brain white matter networks in preclinical Alzheimer’s disease. Neuroimage: Clinical, 8, 660666.
Fletcher, E., Raman, M., Huebner, P., Liu, A., Mungas, D., Carmichael, O., & DeCarli, C. (2013). Loss of fornix white matter volume as a predictor of cognitive impairment in cognitively normal elderly individuals. JAMA Neurology, 70(11), 13891395.
Forde, N.J., Ronan, L., Suckling, J., Scanlon, C., Neary, S., Holleran, L., & Cannon, D.M. (2014). Structural neuroimaging correlates of allelic variation of the BDNF val66met polymorphism. Neuroimage, 90, 280289.
Fox, M.D., & Greicius, M. (2010). Clinical applications of resting state functional connectivity. Frontiers in Systems Neuroscience, 4, 19.
Fox, M.D., & Raichle, M.E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8(9), 700711.
Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., & Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 96739678.
Friese, U., Meindl, T., Herpertz, S.C., Reiser, M.F., Hampel, H., & Teipel, S.J. (2010). Diagnostic utility of novel MRI-based biomarkers for Alzheimer’s disease: Diffusion tensor imaging and deformation-based morphometry. Journal of Alzheimer’s Disease, 20(2), 477490.
Friston, K.J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19(4), 12731302.
Gili, T., Cercignani, M., Serra, L., Perri, R., Giove, F., Maraviglia, B., & Bozzali, M. (2011). Regional brain atrophy and functional disconnection across Alzheimer’s disease evolution. Journal of Neurology, Neurosurgery, and Psychiatry, 82(1), 5866.
Glodzik, L., Kuceyeski, A., Rusinek, H., Tsui, W., Mosconi, L., Li, Y., & de Leon, M.J. (2014). Reduced glucose uptake and Abeta in brain regions with hyperintensities in connected white matter. Neuroimage, 100, 684691.
Goebel, R., Roebroeck, A., Kim, D.-S., & Formisano, E. (2003). Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magnetic Resonance Imaging, 21(10), 12511261.
Gold, B.T., Zhu, Z., Brown, C.A., Andersen, A.H., LaDu, M.J., Tai, L., & Smith, C.D. (2014). White matter integrity is associated with cerebrospinal fluid markers of Alzheimer’s disease in normal adults. Neurobiology of Aging, 35(10), 22632271.
Goncalves, S.I., de Munck, J.C., Pouwels, P.J., Schoonhoven, R., Kuijer, J.P., Maurits, N.M., & Lopes da Silva, F.H. (2006). Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: Inter-subject variability. Neuroimage, 30(1), 203213.
Gonzalez-Escamilla, G., Atienza, M., Garcia-Solis, D., & Cantero, J.L. (2014). Cerebral and blood correlates of reduced functional connectivity in mild cognitive impairment. Brain Structure & Function. [Epub ahead of print].
Grambaite, R., Selnes, P., Reinvang, I., Aarsland, D., Hessen, E., Gjerstad, L., & Fladby, T. (2011). Executive dysfunction in mild cognitive impairment is associated with changes in frontal and cingulate white matter tracts. Journal of Alzheimer’s Disease, 27(2), 453462.
Grana, M., Termenon, M., Savio, A., Gonzalez-Pinto, A., Echeveste, J., Perez, J.M., & Besga, A. (2011). Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson’s correlation. Neurosci Letters, 502(3), 225229.
Granger, C.W.J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424.
Greicius, M.D., Krasnow, B., Reiss, A.L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253258.
Greicius, M.D., & Menon, V. (2004). Default-mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation. Journal of Cognitive Neuroscience, 16(9), 14841492.
Greicius, M.D., Srivastava, G., Reiss, A.L., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 46374642.
Greicius, M.D., Supekar, K., Menon, V., & Dougherty, R.F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19(1), 7278.
Hahn, K., Myers, N., Prigarin, S., Rodenacker, K., Kurz, A., Forstl, H., & Sorg, C. (2013). Selectively and progressively disrupted structural connectivity of functional brain networks in Alzheimer’s disease - revealed by a novel framework to analyze edge distributions of networks detecting disruptions with strong statistical evidence. Neuroimage, 81, 96109.
Hedden, T., Van Dijk, K.R., Becker, J.A., Mehta, A., Sperling, R.A., Johnson, K.A., & Buckner, R.L. (2009). Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. The Journal of Neuroscience, 29(40), 1268612694.
Heise, V., Filippini, N., Trachtenberg, A.J., Suri, S., Ebmeier, K.P., & Mackay, C.E. (2014). Apolipoprotein E genotype, gender and age modulate connectivity of the hippocampus in healthy adults. Neuroimage, 98, 2330.
Horn, A., Ostwald, D., Reisert, M., & Blankenburg, F. (2014). The structural-functional connectome and the default mode network of the human brain. Neuroimage, 102(Pt 1), 142151.
Hsieh, H.J., Kao, P.F., Huang, H.L., & Chou, Y.H. (2010). Cardiac stab injury: A fixed perfusion defect on Tc-99m sestamibi SPECT. Clinical Nuclear Medicine, 35(2), 121122.
Huang, H., Fan, X., Weiner, M., Martin-Cook, K., Xiao, G., Davis, J., & Diaz-Arrastia, R. (2012). Distinctive disruption patterns of white matter tracts in Alzheimer’s disease with full diffusion tensor characterization. Neurobiology of Aging, 33(9), 20292045.
Huang, J., & Auchus, A.P. (2007). Diffusion tensor imaging of normal appearing white matter and its correlation with cognitive functioning in mild cognitive impairment and Alzheimer’s disease. Annals of the New York Academy of Sciences, 1097, 259264.
Huang, J., Friedland, R.P., & Auchus, A.P. (2007). Diffusion tensor imaging of normal-appearing white matter in mild cognitive impairment and early Alzheimer disease: Preliminary evidence of axonal degeneration in the temporal lobe. AJNR American Journal of Neuroradiology, 28(10), 19431948.
Iturria-Medina, Y., Sotero, R.C., Toussaint, P.J., & Evans, A.C. (2014). Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders. PLoS Computational Biology, 10(11), e1003956.
Jack, C.R. Jr., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner, M.W., & Trojanowski, J.Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet. Neurology, 9(1), 119128.
Jacobs, H.I., Gronenschild, E.H., Evers, E.A., Ramakers, I.H., Hofman, P.A., Backes, W.H., & Van Boxtel, M.P. (2015). Visuospatial processing in early Alzheimer’s disease: A multimodal neuroimaging study. Cortex, 64, 394406.
Jeurissen, B., Leemans, A., Tournier, J.D., Jones, D.K., & Sijbers, J. (2013). Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Human Brain Mapping, 34(11), 27472766.
Jones, D.T., Vemuri, P., Murphy, M.C., Gunter, J.L., Senjem, M.L., Machulda, M.M., & Jack, C.R. Jr. (2012). Non-stationarity in the “resting brain’s” modular architecture. PLoS One, 7(6), e39731.
Kalus, P., Slotboom, J., Gallinat, J., Mahlberg, R., Cattapan-Ludewig, K., Wiest, R., & Kiefer, C. (2006). Examining the gateway to the limbic system with diffusion tensor imaging: The perforant pathway in dementia. Neuroimage, 30(3), 713720.
Kantarci, K., Schwarz, C.G., Reid, R.I., Przybelski, S.A., Lesnick, T.G., Zuk, S.M., & Jack, C.R. Jr. (2014). White matter integrity determined with diffusion tensor imaging in older adults without dementia: Influence of amyloid load and neurodegeneration. JAMA Neurology, 71(12), 15471554.
Kehoe, E.G., Farrell, D., Metzler-Baddeley, C., Lawlor, B.A., Kenny, R.A., Lyons, D., & Bokde, A.L. (2015). Fornix white matter is correlated with resting-state functional connectivity of the thalamus and hippocampus in healthy aging but not in mild cognitive impairment - A preliminary study. Frontiers in Aging Neuroscience, 7, 10.
Kim, H.J., Im, K., Kwon, H., Lee, J.M., Kim, C., Kim, Y.J., & Seo, S.W. (2015). Clinical effect of white matter network disruption related to amyloid and small vessel disease. Neurology, 85(1), 6370.
Kljajevic, V., Meyer, P., Holzmann, C., Dyrba, M., Kasper, E., Bokde, A.L., & Teipel, S. (2014). The epsilon4 genotype of apolipoprotein E and white matter integrity in Alzheimer’s disease. Alzheimers & Dementia, 10(3), 401404.
Klupp, E., Grimmer, T., Tahmasian, M., Sorg, C., Yakushev, I., Yousefi, B.H., & Forster, S. (2015). Prefrontal hypometabolism in Alzheimer disease is related to longitudinal amyloid accumulation in remote brain regions. Journal of Nuclear Medicine, 56(3), 399404.
Koch, K., Myers, N.E., Gottler, J., Pasquini, L., Grimmer, T., Forster, S., & Sorg, C. (2014). Disrupted intrinsic networks link amyloid-beta pathology and impaired cognition in prodromal Alzheimer’s disease. Cerebral Cortex. [Epub ahead of print].
Krajcovicova, L., Marecek, R., Mikl, M., & Rektorova, I. (2014). Disruption of resting functional connectivity in Alzheimer’s patients and at-risk subjects. Current Neurology and Neuroscience Reports, 14(10), 491.
Kuczynski, B., Targan, E., Madison, C., Weiner, M., Zhang, Y., Reed, B., & Jagust, W. (2010). White matter integrity and cortical metabolic associations in aging and dementia. Alzheimers & Dementia, 6(1), 5462.
La Joie, R., Landeau, B., Perrotin, A., Bejanin, A., Egret, S., Pelerin, A., & Chetelat, G. (2014). Intrinsic connectivity identifies the hippocampus as a main crossroad between Alzheimer’s and semantic dementia-targeted networks. Neuron, 81(6), 14171428.
Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A., & Kleinschmidt, A. (2003). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 1105311058.
Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., & Chabriat, H. (2001). Diffusion tensor imaging: Concepts and applications. Journal of Magnetic Resonance Imaging, 13(4), 534546.
Le Bihan, D., Turner, R., Douek, P., & Patronas, N. (1992). Diffusion MR imaging: Clinical applications. AJR American Journal of Roentgenology, 159(3), 591599.
Lehmann, M., Madison, C.M., Ghosh, P.M., Seeley, W.W., Mormino, E., Greicius, M.D., & Rabinovici, G.D. (2013). Intrinsic connectivity networks in healthy subjects explain clinical variability in Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 110(28), 1160611611.
Liang, P., Wang, Z., Yang, Y., Jia, X., & Li, K. (2011). Functional disconnection and compensation in mild cognitive impairment: Evidence from DLPFC connectivity using resting-state fMRI. PLoS One, 6(7), e22153.
Liang, Y., Chen, Y., Li, H., Zhao, T., Sun, X., Shu, N., & Zhang, Z. (2015). Disrupted functional connectivity related to differential degeneration of the cingulum bundle in mild cognitive impairment patients. Current Alzheimer Research, 12(3), 255265.
Liang, Y., Li, H., Lv, C., Shu, N., Chen, K., Li, X., & Zhang, Z. (2015). Sex moderates the effects of the Sorl1 gene rs2070045 polymorphism on cognitive impairment and disruption of the cingulum integrity in healthy elderly. Neuropsychopharmacology, 40(6), 15191527.
Liu, Z., Zhang, Y., Yan, H., Bai, L., Dai, R., Wei, W., & Tian, J. (2012). Altered topological patterns of brain networks in mild cognitive impairment and Alzheimer’s disease: A resting-state fMRI study. Psychiatry Research: Neuroimaging, 202(2), 118125.
Lo, C.Y., Wang, P.N., Chou, K.H., Wang, J., He, Y., & Lin, C.P. (2010). Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer’s disease. The Journal of Neuroscience, 30(50), 1687616885.
Lu, J., Liu, H., Zhang, M., Wang, D., Cao, Y., Ma, Q., & Li, K. (2011). Focal pontine lesions provide evidence that intrinsic functional connectivity reflects polysynaptic anatomical pathways. The Journal of Neuroscience, 31(42), 1506515071.
Lyall, D.M., Harris, S.E., Bastin, M.E., Munoz Maniega, S., Murray, C., Lutz, M.W., & Deary, I.J. (2014). Alzheimer’s disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936. Neurobiology of Aging, 35(6), 1513 e1525e1533.
Machulda, M.M., Jones, D.T., Vemuri, P., McDade, E., Avula, R., Przybelski, S., & Jack, C.R. Jr. (2011). Effect of APOE epsilon4 status on intrinsic network connectivity in cognitively normal elderly subjects. Archives of Neurology, 68(9), 11311136.
Mander, B.A., Marks, S.M., Vogel, J.W., Rao, V., Lu, B., Saletin, J.M., & Walker, M.P. (2015). beta-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nature Neuroscience, 18(7), 10511057.
Mantini, D., Perrucci, M.G., Del Gratta, C., Romani, G.L., & Corbetta, M. (2007). Electrophysiological signatures of resting state networks in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 1317013175.
Mason, M.F., Norton, M.I., Van Horn, J.D., Wegner, D.M., Grafton, S.T., & Macrae, C.N. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315(5810), 393395.
Matura, S., Prvulovic, D., Jurcoane, A., Hartmann, D., Miller, J., Scheibe, M., & Pantel, J. (2014). Differential effects of the ApoE4 genotype on brain structure and function. Neuroimage, 89, 8191.
Medina, D., DeToledo-Morrell, L., Urresta, F., Gabrieli, J.D., Moseley, M., Fleischman, D., & Stebbins, G.T. (2006). White matter changes in mild cognitive impairment and AD: A diffusion tensor imaging study. Neurobiology of Aging, 27(5), 663672.
Mendez, M.F., & Shapira, J.S. (2009). Altered emotional morality in frontotemporal dementia. Cognitive Neuropsychiatry, 14(3), 165179.
Menon, V., & Uddin, L.Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5-6), 655667.
Metzler-Baddeley, C., Hunt, S., Jones, D.K., Leemans, A., Aggleton, J.P., & O’Sullivan, M.J. (2012). Temporal association tracts and the breakdown of episodic memory in mild cognitive impairment. Neurology, 79(23), 22332240.
Miao, X., Wu, X., Li, R., Chen, K., & Yao, L. (2011). Altered connectivity pattern of hubs in default-mode network with Alzheimer’s disease: An Granger causality modeling approach. PLoS One, 6(10), e25546.
Mielke, M.M., Okonkwo, O.C., Oishi, K., Mori, S., Tighe, S., Miller, M.I., & Lyketsos, C.G. (2012). Fornix integrity and hippocampal volume predict memory decline and progression to Alzheimer’s disease. Alzheimers & Dementia, 8(2), 105113.
Molinuevo, J.L., Ripolles, P., Simo, M., Llado, A., Olives, J., Balasa, M., & Rami, L. (2014). White matter changes in preclinical Alzheimer’s disease: A magnetic resonance imaging-diffusion tensor imaging study on cognitively normal older people with positive amyloid beta protein 42 levels. Neurobiology of Aging, 35(12), 26712680.
Moretti, D.V., Paternico, D., Binetti, G., Zanetti, O., & Frisoni, G.B. (2012). EEG markers are associated to gray matter changes in thalamus and basal ganglia in subjects with mild cognitive impairment. Neuroimage, 60(1), 489496.
Mori, S., Crain, B.J., Chacko, V.P., & Van Zijl, P.C.M. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45(2), 265269.
Mori, S., & Zhang, J. (2006). Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron, 51(5), 527539.
Mormino, E.C., Smiljic, A., Hayenga, A.O., Onami, S.H., Greicius, M.D., Rabinovici, G.D., & Jagust, W.J. (2011). Relationships between beta-amyloid and functional connectivity in different components of the default mode network in aging. Cerebral Cortex, 21(10), 23992407.
Morris, J.C., Roe, C.M., Xiong, C., Fagan, A.M., Goate, A.M., Holtzman, D.M., & Mintun, M.A. (2010). APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Annals of Neurology, 67(1), 122131.
Myers, N., Pasquini, L., Gottler, J., Grimmer, T., Koch, K., Ortner, M., & Sorg, C. (2014). Within-patient correspondence of amyloid-beta and intrinsic network connectivity in Alzheimer’s disease. Brain, 137(Pt 7), 20522064.
Naggara, O., Oppenheim, C., Rieu, D., Raoux, N., Rodrigo, S., Dalla Barba, G., & Meder, J.F. (2006). Diffusion tensor imaging in early Alzheimer’s disease. Psychiatry Research, 146(3), 243249.
Nath, S., Agholme, L., Kurudenkandy, F.R., Granseth, B., Marcusson, J., & Hallbeck, M. (2012). Spreading of neurodegenerative pathology via neuron-to-neuron transmission of beta-amyloid. The Journal of Neuroscience, 32(26), 87678777.
O’Dwyer, L., Lamberton, F., Bokde, A.L., Ewers, M., Faluyi, Y.O., Tanner, C., & Hampel, H. (2012). Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PLoS One, 7(2), e32441.
Oh, H., & Jagust, W.J. (2013). Frontotemporal network connectivity during memory encoding is increased with aging and disrupted by beta-amyloid. The Journal of Neuroscience, 33(47), 1842518437.
Parihar, M.S., & Brewer, G.J. (2010). Amyloid-beta as a modulator of synaptic plasticity. Journal of Alzheimer’s Disease, 22(3), 741763.
Patel, K.T., Stevens, M.C., Pearlson, G.D., Winkler, A.M., Hawkins, K.A., Skudlarski, P., & Bauer, L.O. (2013). Default mode network activity and white matter integrity in healthy middle-aged ApoE4 carriers. Brain Imaging and Behavior, 7(1), 6067.
Patriat, R., Molloy, E.K., Meier, T.B., Kirk, G.R., Nair, V.A., Meyerand, M.E., & Birn, R.M. (2013). The effect of resting condition on resting-state fMRI reliability and consistency: A comparison between resting with eyes open, closed, and fixated. Neuroimage, 78, 463473.
Perrotin, A., Desgranges, B., Landeau, B., Mezenge, F., La Joie, R., Egret, S., & Chetelat, G. (2015). Anosognosia in Alzheimer disease: Disconnection between memory and self-related brain networks. Annals of Neurology, 78, 477486.
Persson, J., Lind, J., Larsson, A., Ingvar, M., Sleegers, K., Van Broeckhoven, C., & Nyberg, L. (2008). Altered deactivation in individuals with genetic risk for Alzheimer’s disease. Neuropsychologia, 46(6), 16791687.
Pievani, M., de Haan, W., Wu, T., Seeley, W.W., & Frisoni, G.B. (2011). Functional network disruption in the degenerative dementias. The Lancet. Neurology, 10(9), 829843.
Puzzo, D., Privitera, L., Leznik, E., Fa, M., Staniszewski, A., Palmeri, A., & Arancio, O. (2008). Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. The Journal of Neuroscience, 28(53), 1453714545.
Racine, A.M., Adluru, N., Alexander, A.L., Christian, B.T., Okonkwo, O.C., Oh, J., & Johnson, S.C. (2014). Associations between white matter microstructure and amyloid burden in preclinical Alzheimer’s disease: A multimodal imaging investigation. Neuroimage. Clinical, 4, 604614.
Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., & Shulman, G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676682.
Raj, A., Kuceyeski, A., & Weiner, M. (2012). A network diffusion model of disease progression in dementia. Neuron, 73(6), 12041215.
Raj, A., LoCastro, E., Kuceyeski, A., Tosun, D., Relkin, N., & Weiner, M. (2015). Network diffusion model of progression predicts longitudinal patterns of atrophy and metabolism in Alzheimer’s Disease. Cell Reports. [Epub ahead of print].
Rankin, K.P., Gorno-Tempini, M.L., Allison, S.C., Stanley, C.M., Glenn, S., Weiner, M.W., & Miller, B.L. (2006). Structural anatomy of empathy in neurodegenerative disease. Brain, 129, 29452956.
Ray, N.J., Metzler-Baddeley, C., Khondoker, M.R., Grothe, M.J., Teipel, S., Wright, P., & O’Sullivan, M.J. (2015). Cholinergic Basal forebrain structure influences the reconfiguration of white matter connections to support residual memory in mild cognitive impairment. The Journal of Neuroscience, 35(2), 739747.
Reijmer, Y.D., Leemans, A., Caeyenberghs, K., Heringa, S.M., Koek, H.L., & Biessels, G.J. (2013). Disruption of cerebral networks and cognitive impairment in Alzheimer disease. Neurology, 80(15), 13701377.
Reijmer, Y.D., Leemans, A., Heringa, S.M., Wielaard, I., Jeurissen, B., Koek, H.L., & Biessels, G.J. (2012). Improved sensitivity to cerebral white matter abnormalities in Alzheimer’s disease with spherical deconvolution based tractography. PLoS One, 7(8), e44074.
Ringman, J.M., O’Neill, J., Geschwind, D., Medina, L., Apostolova, L.G., Rodriguez, Y., & Bartzokis, G. (2007). Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer’s disease mutations. Brain, 130(Pt 7), 17671776.
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 10591069.
Ryan, N.S., Keihaninejad, S., Shakespeare, T.J., Lehmann, M., Crutch, S.J., Malone, I.B., & Fox, N.C. (2013). Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial Alzheimer’s disease. Brain, 136(Pt 5), 13991414.
Sadaghiani, S., Scheeringa, R., Lehongre, K., Morillon, B., Giraud, A.L., & Kleinschmidt, A. (2010). Intrinsic connectivity networks, alpha oscillations, and tonic alertness: A simultaneous electroencephalography/functional magnetic resonance imaging study. The Journal of Neuroscience, 30(30), 1024310250.
Salami, A., Pudas, S., & Nyberg, L. (2014). Elevated hippocampal resting-state connectivity underlies deficient neurocognitive function in aging. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 1765417659.
Sanz-Arigita, E.J., Schoonheim, M.M., Damoiseaux, J.S., Rombouts, S.A., Maris, E., Barkhof, F., & Stam, C.J. (2010). Loss of ‘small-world’ networks in Alzheimer’s disease: Graph analysis of FMRI resting-state functional connectivity. PLoS One, 5(11), e13788.
Scola, E., Bozzali, M., Agosta, F., Magnani, G., Franceschi, M., Sormani, M.P., & Falini, A. (2010). A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up. Journal of Neurology, Neurosurgery and Psychiatry, 81(7), 798805.
Seeley, W.W., Allman, J.M., Carlin, D.A., Crawford, R.K., Macedo, M.N., Greicius, M.D., & Miller, B.L. (2007). Divergent social functioning in behavioral variant frontotemporal dementia and Alzheimer disease: Reciprocal networks and neuronal evolution. Alzheimer Disease and Associated Disorders, 21(4), S50S57.
Seeley, W.W., Crawford, R.K., Zhou, J., Miller, B.L., & Greicius, M.D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62(1), 4252.
Selnes, P., Aarsland, D., Bjornerud, A., Gjerstad, L., Wallin, A., Hessen, E., & Fladby, T. (2013). Diffusion tensor imaging surpasses cerebrospinal fluid as predictor of cognitive decline and medial temporal lobe atrophy in subjective cognitive impairment and mild cognitive impairment. Journal of Alzheimer’s Disease, 33(3), 723736.
Sepulcre, J., Sabuncu, M.R., Becker, A., Sperling, R., & Johnson, K.A. (2013). In vivo characterization of the early states of the amyloid-beta network. Brain, 136(Pt 7), 22392252.
Sepulcre, J., Sabuncu, M.R., Yeo, T.B., Liu, H., & Johnson, K.A. (2012). Stepwise connectivity of the modal cortex reveals the multimodal organization of the human brain. The Journal of Neuroscience, 32(31), 1064910661.
Sexton, C.E., Mackay, C.E., Lonie, J.A., Bastin, M.E., Terriere, E., O’Carroll, R.E., & Ebmeier, K.P. (2010). MRI correlates of episodic memory in Alzheimer’s disease, mild cognitive impairment, and healthy aging. Psychiatry Research, 184(1), 5762.
Shankar, G.M., Bloodgood, B.L., Townsend, M., Walsh, D.M., Selkoe, D.J., & Sabatini, B.L. (2007). Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. The Journal of Neuroscience, 27(11), 28662875.
Shao, J., Myers, N., Yang, Q., Feng, J., Plant, C., Bohm, C., & Sorg, C. (2012). Prediction of Alzheimer’s disease using individual structural connectivity networks. Neurobiology of Aging, 33(12), 27562765.
Sheline, Y.I., Morris, J.C., Snyder, A.Z., Price, J.L., Yan, Z., D’Angelo, G., & Mintun, M.A. (2010). APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Abeta42. The Journal of Neuroscience, 30(50), 1703517040.
Sheline, Y.I., Raichle, M.E., Snyder, A.Z., Morris, J.C., Head, D., Wang, S., & Mintun, M.A. (2010). Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biological Psychiatry, 67(6), 584587.
Shulman, G.L., Corbetta, M., Fiez, J.A., Buckner, R.L., Miezin, F.M., Raichle, M.E., & Petersen, S.E. (1997). Searching for activations that generalize over tasks. Human Brain Mapping, 5(4), 317322.
Smith, S.M., Beckmann, C.F., Andersson, J., Auerbach, E.J., Bijsterbosch, J., Douaud, G., & Glasser, M.F. (2013). Resting-state fMRI in the Human Connectome Project. Neuroimage, 80, 144168.
Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., & Beckmann, C.F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 1304013045.
Soldner, J., Meindl, T., Koch, W., Bokde, A.L., Reiser, M.F., Moller, H.J., & Teipel, S.J. (2012). [Structural and functional neuronal connectivity in Alzheimer’s disease: A combined DTI and fMRI study]. Der Nervenarzt, 83(7), 878887.
Sollberger, M., Stanley, C.M., Wilson, S.M., Gyurak, A., Beckman, V., Growdon, M., & Rankin, K.P. (2009). Neural basis of interpersonal traits in neurodegenerative diseases. Neuropsychologia, 47(13), 28122827.
Song, S.K., Sun, S.W., Ju, W.K., Lin, S.J., Cross, A.H., & Neufeld, A.H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage, 20(3), 17141722.
Sorg, C., Riedl, V., Muhlau, M., Calhoun, V.D., Eichele, T., Laer, L., & Wohlschlager, A.M. (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 1876018765.
Sperling, R.A., Laviolette, P.S., O’Keefe, K., O’Brien, J., Rentz, D.M., Pihlajamaki, M., & Johnson, K.A. (2009). Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron, 63(2), 178188.
Spires-Jones, T.L., & Hyman, B.T. (2014). The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron, 82(4), 756771.
Sporns, O., Honey, C.J., & Kotter, R. (2007). Identification and classification of hubs in brain networks. PLoS One, 2(10), e1049.
Stahl, R., Dietrich, O., Teipel, S.J., Hampel, H., Reiser, M.F., & Schoenberg, S.O. (2007). White matter damage in Alzheimer disease and mild cognitive impairment: Assessment with diffusion-tensor MR imaging and parallel imaging techniques. Radiology, 243(2), 483492.
Stenset, V., Bjornerud, A., Fjell, A.M., Walhovd, K.B., Hofoss, D., Due-Tonnessen, P., & Fladby, T. (2011). Cingulum fiber diffusivity and CSF T-tau in patients with subjective and mild cognitive impairment. Neurobiology of Aging, 32(4), 581589.
Sturm, V.E., McCarthy, M.E., Yun, I., Madan, A., Yuan, J.W., Holley, S.R., & Levenson, R.W. (2011). Mutual gaze in Alzheimer’s disease, frontotemporal and semantic dementia couples. Social Cognitive and Affective Neuroscience, 6(3), 359367.
Sturm, V.E., Yokoyama, J.S., Seeley, W.W., Kramer, J.H., Miller, B.L., & Rankin, K.P. (2013). Heightened emotional contagion in mild cognitive impairment and Alzheimer’s disease is associated with temporal lobe degeneration. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 99449949.
Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M.D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology, 4(6), e1000100.
Tahmasian, M., Pasquini, L., Scherr, M., Meng, C., Forster, S., Mulej Bratec, S., & Drzezga, A. (2015). The lower hippocampus global connectivity, the higher its local metabolism in Alzheimer disease. Neurology, 84(19), 19561963.
Teipel, S., Ehlers, I., Erbe, A., Holzmann, C., Lau, E., Hauenstein, K., & Berger, C. (2015). Structural connectivity changes underlying altered working memory networks in mild cognitive impairment: A three-way image fusion analysis. J Neuroimaging, 25(4), 634642.
Teipel, S.J., Bokde, A.L., Meindl, T., Amaro, E. Jr., Soldner, J., Reiser, M.F., & Hampel, H. (2010). White matter microstructure underlying default mode network connectivity in the human brain. Neuroimage, 49(3), 20212032.
Teipel, S.J., Grothe, M.J., Filippi, M., Fellgiebel, A., Dyrba, M., Frisoni, G.B., & group, E.S. (2014). Fractional anisotropy changes in Alzheimer’s disease depend on the underlying fiber tract architecture: A multiparametric DTI study using joint independent component analysis. Journal of Alzheimer’s Disease, 41(1), 6983.
Teipel, S.J., Lerche, M., Kilimann, I., O’Brien, K., Grothe, M., Meyer, P., & Hauenstein, K. (2014). Decline of fiber tract integrity over the adult age range: A diffusion spectrum imaging study. Journal of Magnetic Resonance Imaging, 40(2), 348359.
Teipel, S.J., Meindl, T., Grinberg, L., Grothe, M., Cantero, J.L., Reiser, M.F., & Hampel, H. (2011). The cholinergic system in mild cognitive impairment and Alzheimer’s disease: An in vivo MRI and DTI study. Human Brain Mapping, 32(9), 13491362.
Teipel, S.J., Meindl, T., Wagner, M., Stieltjes, B., Reuter, S., Hauenstein, K.H., & Hampel, H. (2010). Longitudinal changes in fiber tract integrity in healthy aging and mild cognitive impairment: A DTI follow-up study. Journal of Alzheimer’s Disease, 22(2), 507522.
Teipel, S.J., Pogarell, O., Meindl, T., Dietrich, O., Sydykova, D., Hunklinger, U., & Hampel, H. (2009). Regional networks underlying interhemispheric connectivity: An EEG and DTI study in healthy ageing and amnestic mild cognitive impairment. Human Brain Mapping, 30(7), 20982119.
Teipel, S.J., Reuter, S., Stieltjes, B., Acosta-Cabronero, J., Ernemann, U., Fellgiebel, A., & Hampel, H. (2011). Multicenter stability of diffusion tensor imaging measures: A European clinical and physical phantom study. Psychiatry Research, 194(3), 363371.
Teipel, S.J., Sabri, O., Grothe, M., Barthel, H., Prvulovic, D., Buerger, K., & Hampel, H. (2013). Perspectives for multimodal neurochemical and imaging biomarkers in Alzheimer’s disease. Journal of Alzheimer’s Disease, 33(Suppl. 1), S329S347.
Teipel, S.J., Wegrzyn, M., Meindl, T., Frisoni, G., Bokde, A.L., Fellgiebel, A., & Ewers, M. (2012). Anatomical MRI and DTI in the diagnosis of Alzheimer’s disease: A European multicenter study. Journal of Alzheimer’s Disease, 31(Suppl. 3), S33S47.
Thal, D.R., Attems, J., & Ewers, M. (2014). Spreading of amyloid, tau, and microvascular pathology in Alzheimer’s disease: Findings from neuropathological and neuroimaging studies. Journal of Alzheimer’s Disease, 42(Suppl. 4), S421S429.
van den Heuvel, M., Mandl, R., Luigjes, J., & Hulshoff Pol, H. (2008). Microstructural organization of the cingulum tract and the level of default mode functional connectivity. The Journal of Neuroscience, 28(43), 1084410851.
van den Heuvel, M.P., Mandl, R.C., Kahn, R.S., & Hulshoff Pol, H.E. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping, 30(10), 31273141.
van den Heuvel, M.P., & Sporns, O. (2011). Rich-club organization of the human connectome. Journal of Neuroscience, 31(44), 1577515786.
Vecchio, F., Miraglia, F., Curcio, G., Altavilla, R., Scrascia, F., Giambattistelli, F., & Rossini, P.M. (2015). Cortical brain connectivity evaluated by graph theory in dementia: A correlation study between functional and structural data. Journal of Alzheimer’s Disease, 45, 745756.
Vidal-Pineiro, D., Valls-Pedret, C., Fernandez-Cabello, S., Arenaza-Urquijo, E.M., Sala-Llonch, R., Solana, E., & Bartres-Faz, D. (2014). Decreased default mode network connectivity correlates with age-associated structural and cognitive changes. Frontiers in Aging Neuroscience, 6, 256.
Villain, N., Fouquet, M., Baron, J.C., Mezenge, F., Landeau, B., de La Sayette, V., & Chetelat, G. (2010). Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer’s disease. Brain, 133(11), 33013314.
Villemagne, V.L., Pike, K.E., Chetelat, G., Ellis, K.A., Mulligan, R.S., Bourgeat, P., & Rowe, C.C. (2011). Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease. Annals of Neurology, 69(1), 181192.
Vincent, J.L., Patel, G.H., Fox, M.D., Snyder, A.Z., Baker, J.T., Van Essen, D.C., & Raichle, M.E. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447(7140), 8386.
Voineskos, A.N., Lerch, J.P., Felsky, D., Shaikh, S., Rajji, T.K., Miranda, D., & Kennedy, J.L. (2011). The brain-derived neurotrophic factor Val66Met polymorphism and prediction of neural risk for Alzheimer disease. Archives of General Psychiatry, 68(2), 198206.
Wang, D., Liu, B., Qin, W., Wang, J., Zhang, Y., Jiang, T., & Yu, C. (2013). KIBRA gene variants are associated with synchronization within the default-mode and executive control networks. Neuroimage, 69, 213222.
Wang, J., Wang, X., He, Y., Yu, X., Wang, H., & He, Y. (2015). Apolipoprotein E epsilon4 modulates functional brain connectome in Alzheimer’s disease. Human Brain Mapping, 36, 18281846.
Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., & Jiang, T. (2007). Altered functional connectivity in early Alzheimer’s disease: A resting-state fMRI study. Human Brain Mapping, 28(10), 967978.
Wedeen, V.J., Wang, R.P., Schmahmann, J.D., Benner, T., Tseng, W.Y., Dai, G., & de Crespigny, A.J. (2008). Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage, 41(4), 12671277.
Wee, C.Y., Yap, P.T., Zhang, D., Denny, K., Browndyke, J.N., Potter, G.G., & Shen, D. (2012). Identification of MCI individuals using structural and functional connectivity networks. Neuroimage, 59(3), 20452056.
Weiler, M., de Campos, B.M., Nogueira, M.H., Pereira Damasceno, B., Cendes, F., & Balthazar, M.L. (2014). Structural connectivity of the default mode network and cognition in Alzheimers disease. Psychiatry Research, 223(1), 1522.
Westlye, L.T., Reinvang, I., Rootwelt, H., & Espeseth, T. (2012). Effects of APOE on brain white matter microstructure in healthy adults. Neurology, 79(19), 19611969.
Whitwell, J.L., Przybelski, S.A., Weigand, S.D., Knopman, D.S., Boeve, B.F., Petersen, R.C., & Jack, C.R. Jr. (2007). 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain, 130(Pt 7), 17771786.
Xie, S., Xiao, J.X., Gong, G.L., Zang, Y.F., Wang, Y.H., Wu, H.K., & Jiang, X.X. (2006). Voxel-based detection of white matter abnormalities in mild Alzheimer disease. Neurology, 66(12), 18451849.
Xiong, C., Roe, C.M., Buckles, V., Fagan, A., Holtzman, D., Balota, D., & Morris, J.C. (2011). Role of family history for Alzheimer biomarker abnormalities in the adult children study. Archives of Neurology, 68(10), 13131319.
Yakushev, I., Schreckenberger, M., Muller, M.J., Schermuly, I., Cumming, P., Stoeter, P., & Fellgiebel, A. (2011). Functional implications of hippocampal degeneration in early Alzheimer’s disease: A combined DTI and PET study. European Journal of Nuclear Medicine and Molecular Imaging, 38(12), 22192227.
Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., & Buckner, R.L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 11251165.
Zhang, H.Y., Wang, S.J., Liu, B., Ma, Z.L., Yang, M., Zhang, Z.J., & Teng, G.J. (2010). Resting brain connectivity: Changes during the progress of Alzheimer disease. Radiology, 256(2), 598606.
Zhang, Y., Schuff, N., Jahng, G.H., Bayne, W., Mori, S., Schad, L., & Weiner, M.W. (2007). Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology, 68(1), 1319.
Zhou, J., Gennatas, E.D., Kramer, J.H., Miller, B.L., & Seeley, W.W. (2012). Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron, 73(6), 12161227.
Zhou, J., Greicius, M.D., Gennatas, E.D., Growdon, M.E., Jang, J.Y., Rabinovici, G.D., & Seeley, W.W. (2010). Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain, 133(Pt 5), 13521367.
Zhuang, L., Sachdev, P.S., Trollor, J.N., Kochan, N.A., Reppermund, S., Brodaty, H., & Wen, W. (2012). Microstructural white matter changes in cognitively normal individuals at risk of amnestic MCI. Neurology, 79(8), 748754.
Zuo, X.N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F.X., Sporns, O., & Milham, M.P. (2012). Network centrality in the human functional connectome. Cerebral Cortex, 22(8), 18621875.