Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T07:46:45.532Z Has data issue: false hasContentIssue false

Keep Up the Pace: Declines in Simple Repetitive Timing Differentiate Healthy Aging from the Earliest Stages of Alzheimer's Disease

Published online by Cambridge University Press:  29 August 2012

Ashley S. Bangert*
Affiliation:
Department of Psychology, Washington University in St. Louis, St. Louis, Missouri
David A. Balota
Affiliation:
Department of Psychology, Washington University in St. Louis, St. Louis, Missouri
*
Correspondence and reprint requests to: Ashley S. Bangert, Department of Psychology, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79902. E-mail: asbangert2@utep.edu

Abstract

The current study examined whether healthy older adults (OA) and individuals at the earliest stages of dementia of the Alzheimer's type (DAT) differ from younger adults (YA) and from each other on a simple, extended continuous tapping task using intervals (500 ms, 1000 ms, and 1500 ms) thought to differentially engage attentional control systems. OA groups sped up their tapping at the slowest target rate compared to the YA; this pattern was magnified in the early stage DAT groups. Performance variability appeared especially sensitive to DAT-related changes, as reliable differences between healthy OA and very mild DAT individuals emerged for multiple tap rates. These differences are proposed to result from breakdowns in attentional control that disrupt error-correction processes and the ability to resolve discrepancies between internally-generated temporal expectancies and the external temporal demands of the repetitive timing task. (JINS, 2012, 18, 1–12)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M., Moss, M.B., Blacker, D., Tanzi, R., McArdle, J.J. (2007). Longitudinal change in cognitive performance among individuals with mild cognitive impairment. Neuropsychology, 21, 158169. doi:10.1037/0894-4105.21.2.158CrossRefGoogle ScholarPubMed
Albert, M., Moss, M.B., Tanzi, R., Jones, K. (2001). Preclinical prediction of AD using neuropsychological tests. Journal of the International Neuropsychological Society, 7, 631639. doi:10.1017/S1355617701755105CrossRefGoogle ScholarPubMed
Armitage, S.G. (1945). An analysis of certain psychological tests used for the evaluation of brain injury. Psychological Monographs, 60 (1, Whole No. 177), 148.Google Scholar
Balota, D.A., Cortese, M.J., Duchek, J.M., Adams, D., Roediger, H.L., III, McDermott, K.B., Yerys, B.E. (1999). Veridical and false memories in healthy older adults and in dementia of the Alzheimer's type. Cognitive Neuropsychology, 16, 361384. doi:10.1080/026432999380834CrossRefGoogle Scholar
Balota, D.A., Faust, M.E. (2001). Attention in dementia of the Alzheimer's type. In F. Bolla & S. Cappa (Eds.), Handbook of neuropsychology: Vol. 6. Aging and dementia (2nd ed., pp. 5180). New York: Elsevier Science.Google Scholar
Baudouin, A., Vanneste, S., Isingrini, M. (2004). Age-related cognitive slowing: The role of spontaneous tempo and processing speed. Experimental Aging Research, 30(3), 225239. doi:10.1080/03610730490447831CrossRefGoogle ScholarPubMed
Baudouin, A., Vanneste, S., Pouthas, V., Isingrini, M. (2006). Age-related changes in duration reproduction: Involvement of working memory processes. Brain and Cognition, 62(1), 1723. doi:10.1016/j.bandc.2006.03.003CrossRefGoogle ScholarPubMed
Bennett, D.A., Schneider, J.A., Arvanitakis, Z., Kelly, J.F., Aggarwal, N.T., Shah, R.C., Wilson, R.S. (2006). Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology, 66, 18371844. doi:10.1212/01.wnl.0000219668.47116.e6CrossRefGoogle ScholarPubMed
Berardi, A., Parasuraman, R., Haxby, J.V. (2005). Sustained attention in mild Alzheimer's disease. Developmental Neuropsychology, 28(1), 507537. doi:10.1207/s15326942dn2801CrossRefGoogle ScholarPubMed
Berg, L., McKeel, D.W., Miller, J.P., Storandt, M., Rubin, E.H., Morris, J.C., Saunders, A.M. (1998). Clinicopathologic studies in cognitively healthy aging and Alzheimer disease: Relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Archives of Neurology, 55, 326335. doi:10.1001/archneur.55.3.326CrossRefGoogle ScholarPubMed
Block, R.A., Zakay, D., Hancock, P.A. (1998). Human aging and duration judgments: A meta-analytic review. Psychology and Aging, 13(4), 584596. doi:10.1037/0882-7974.13.4.584CrossRefGoogle ScholarPubMed
Brown, S.W. (1997). Attentional resources in timing: Interference effects in concurrent temporal and nontemporal working memory tasks. Perception & Psychophysics, 59(7), 11181140.CrossRefGoogle ScholarPubMed
Burke, W.J., Miller, J.P., Rubin, E.H., Morris, J.C., Coben, L.A., Duchek, J.M., Berg, L. (1988). The reliability of the Washington University Clinical Dementia Rating. Archives of Neurology, 45, 3132.CrossRefGoogle ScholarPubMed
Caselli, L., Iaboli, L., Nichelli, P. (2009). Time estimation in mild Alzheimer's disease patients. Behavioral and Brain Functions, 5, 32. doi:10.1186/1744-9081-5-32CrossRefGoogle ScholarPubMed
Castel, A.D., Balota, D.A., McCabe, D.P. (2009). Memory efficiency and the strategic control of attention at encoding: Impairments of value-directed remembering in Alzheimer's disease. Neuropsychology, 23(3), 297306. doi:10.1037/a0014888CrossRefGoogle ScholarPubMed
Collier, G.L., Ogden, R.T. (2004). Adding drift to the decomposition of simple isochronous tapping: An extension of the Wing-Kristofferson model. Journal of Experimental Psychology: Human Perception and Performance, 30(5), 853872. doi:10.1037/0096-1523.30.5.853Google Scholar
Craik, F.I., Lockhart, R.S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning & Verbal Behavior, 11(6), 671684.CrossRefGoogle Scholar
Duchek, J.M., Balota, D.A., Ferraro, F.R. (1994). Component analysis of a rhythmic finger tapping task in individuals with senile dementia of the Alzheimer type and in individuals with Parkinson's disease. Neuropsychology, 8, 218226. doi:10.1037/0894-4105.8.2.218CrossRefGoogle Scholar
Duchek, J.M., Balota, D.A., Tse, C., Holtzman, D.M., Goate, A.M. (2009). The utility of intraindividual variability in selective attention tasks as an early marker for Alzheimer's disease. Neuropsychology, 23(6), 746758. doi:10.1037/a0016583CrossRefGoogle ScholarPubMed
Faust, M.E., Balota, D.A. (2007). Inhibition, facilitation, and attentional control in dementia of the Alzheimer's type: The role of unifying principles in cognitive theory development. In D.S. Gorfein & C.M. MacLeod (Eds.) Inhibition in cognition (pp. 213238). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Fortin, C., Rousseau, R., Bourque, P.E., Kirouac, E. (1993). Time estimation and concurrent nontemporal processing: Specific interference from short-term-memory demands. Perception & Psychophysics, 53(5), 536548.CrossRefGoogle ScholarPubMed
Gallistel, C.R., Gibbon, J. (2000). Time, rate, and conditioning. Psychological Review, 107(2), 289344. doi:10.1037/0033-295X.107.2.289CrossRefGoogle ScholarPubMed
Gibbon, J., Church, R.M., Meck, W.H. (1984). Scalar timing in memory. Annals of the New York Academy of Sciences, 423, 5277.CrossRefGoogle ScholarPubMed
Gibbon, J., Fairhurst, S. (1994). Ratio versus difference comparators in choice. Journal of the Experimental Analysis of Behavior, 62(3), 409434. doi:10.1901/jeab.1994.62-409CrossRefGoogle ScholarPubMed
Goodglass, H., Kaplan, E. (1983a). The assessment of aphasia and related disorders (2nd ed.). Philadelphia: Lea & Febiger.Google Scholar
Goodglass, H., Kaplan, E. (1983b). Boston Diagnostic Aphasia Examination Booklet, III, ORAL EXPRESSION, J. Animal Naming (Fluency in Controlled Association). Philadelphia: Lea & Febiger.Google Scholar
Grober, E., Buschke, H., Crystal, H., Bang, S., Dresner, R. (1988). Screening for dementia by memory testing. Neurology, 3, 900903.CrossRefGoogle Scholar
Harrington, D.L., Haaland, K.Y., Hermanowicz, N. (1998). Temporal processing in the basal ganglia. Neuropsychology, 12(1), 312. doi:10.1037/0894-4105.12.1.3CrossRefGoogle ScholarPubMed
Hultsch, D.F., MacDonald, S.W.S., Hunter, M.A., Levy-Bencheton, J., Strauss, E. (2000). Intraindividual variability in cognitive performance in older adults: Comparison of adults with mild dementia, adults with arthritis, and healthy adults. Neuropsychology, 14(4), 588598. doi:10.1037/0894-4105.14.4.588CrossRefGoogle ScholarPubMed
Hutchison, K.A., Balota, D.A., Duchek, J.M. (2010). The utility of Stroop task switching as a marker for early-stage Alzheimer's disease. Psychology and Aging, 25(3), 545559. doi:10.1037/a0018498CrossRefGoogle ScholarPubMed
Ivry, R.B., Hazeltine, R.E. (1995). Perception and production of temporal intervals across a range of durations: Evidence for a common timing mechanism. Journal of Experimental Psychology: Human Perception and Performance, 21(1), 318. doi:10.1037/0096-1523.21.1.3Google ScholarPubMed
Jacoby, L.L. (1999). Deceiving the elderly: Effects of accessibility bias in cued-recall performance. Cognitive Neuropsychology, 16, 417436. doi:10.1080/026432999380861CrossRefGoogle Scholar
Koch, G., Oliveri, M., Caltagirone, C. (2009). Neural networks engaged in milliseconds and seconds time processing: Evidence from transcranial magnetic stimulation and patients with cortical or subcortical dysfunction. Philosophical Transactions from the Royal Society of London. Series B, Biological Sciences, 364, 19071918.CrossRefGoogle ScholarPubMed
Krampe, R.T., Doumas, M., Lavrysen, A., Rapp, M. (2010). The costs of taking it slowly: Fast and slow movement timing in older age. Psychology and Aging, 25(4), 980990. doi:10.1037/a0020090CrossRefGoogle ScholarPubMed
Large, E.W., Jones, M.R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119159. doi:10.1037/0033-295X.106.1.119CrossRefGoogle Scholar
Lejeune, H. (1998). Switching or gating? The attentional challenge in cognitive models of psychological time. Behavioural Processes, 44(2), 127145. doi:10.1016/S0376-6357(98)00045-XCrossRefGoogle ScholarPubMed
Lewis, P.A., Miall, R.C. (2003). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13(2), 250255. doi:10.1016/S0959-4388(03)00036-9CrossRefGoogle ScholarPubMed
Lewis, P.A., Miall, R.C. (2006). Remembering the time: A continuous clock. Trends in Cognitive Sciences, 10(9), 401406. doi:10.1016/j.tics.2006.07.006CrossRefGoogle Scholar
Macar, F., Grondin, S., Casini, L. (1994). Controlled attention sharing influences time estimation. Memory & Cognition, 22(6), 673–686.CrossRefGoogle ScholarPubMed
Madison, G. (2001). Variability in isochronous tapping: Higher order dependencies as a function of intertap interval. Journal of Experimental Psychology: Human Perception and Performance, 27(2), 411422. doi:10.1037/0096-1523.27.2.411Google ScholarPubMed
Malapani, C., Fairhurst, S. (2002). Scalar timing in animals and humans. Learning and Motivation, 33, 156176. doi:10.1006/lmot.2001.1105CrossRefGoogle Scholar
McAuley, J.D., Jones, M.R., Holub, S., Johnston, H.M., Miller, N.S. (2006). The time of our lives: Life span development of timing and event tracking. Journal of Experimental Psychology: General, 135(3), 348367. doi:10.1037/0096-3445.135.3.348CrossRefGoogle ScholarPubMed
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA work group under the auspices of the Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 34, 939944.CrossRefGoogle ScholarPubMed
Michon, J.A. (1985). The compleat time experiencer. In J.A. Michon & J.L. Jackson (Eds.), Time, mind, and behavior (pp. 2054). Berlin: Springer Verlag.CrossRefGoogle Scholar
Morris, J.C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43(11), 24122414.CrossRefGoogle ScholarPubMed
Morris, J.C., Fulling, K. (1988). Early Alzheimer's disease: Diagnostic considerations. Archives of Neurology, 45(3), 345349.CrossRefGoogle ScholarPubMed
Morris, J.C., Storandt, M., McKeel, D.W., Rubin, E.H., Price, J.L., Grant, E.A., Berg, L. (1996). Cerebral amyloid deposition and diffuse plaques in “normal’’ aging: Evidence for presymptomatic and very mild Alzheimer's disease. Neurology, 46(3), 707719.CrossRefGoogle ScholarPubMed
Morris, J.C., Storandt, M., Miller, J.P., McKeel, D.W., Price, J.L., Rubin, E.H., Berg, L. (2001). Mild cognitive impairment represents early-stage Alzheimer disease. Archives of Neurology, 58(3), 397405. doi:10.1001/archneur.58.3.397CrossRefGoogle ScholarPubMed
Nichelli, P., Vernneri, A., Molinari, M., Tavani, F., Grafman, J. (1993). Precision and accuracy of subjective time estimation in different memory disorders. Cognitive Brain Research, 1(2), 8793. doi:10.1016/0926-6410(93)90014-VCrossRefGoogle ScholarPubMed
Papagno, C., Allegra, A., Cardaci, M. (2004). Time estimation in Alzheimer's disease and the role of the central executive. Brain and Cognition, 54(1), 1823. doi:10.1016/S0278-2626(03)00237-9CrossRefGoogle ScholarPubMed
Perbal, S., Droit-Volet, S., Isingrini, M., Pouthas, V. (2002). Relationships between age-related changes in time estimation and age-related changes in processing speed, attention and memory. Neuropsychology and Cognition, 9(3), 201216. doi:10.1076/anec.9.3.201.9609CrossRefGoogle Scholar
Perry, R.J., Hodges, J.R. (1999). Attention and executive deficits in Alzheimer's disease: A critical review. Brain, 122(3), 383404. doi:10.1093/brain/122.3.383CrossRefGoogle ScholarPubMed
Pierce, C.A., Block, R.A., Aguinis, H. (2004). Cautionary note on reporting eta-squared values from multifactor ANOVA designs. Educational and Psychological Measurement, 64(6), 916924. doi:10.1177/0013164404264848CrossRefGoogle Scholar
Pöppel, E. (2004). Lost in time: A historical frame, elementary processing units and the 3-second window. Acta Neurobiologiae Experimentalis, 64, 295301.CrossRefGoogle Scholar
Price, J.L., Morris, J.C. (1999). Tangles and plaques in nondemented aging and ‘preclinical’ Alzheimer's disease. Annals of Neurology, 45(3), 358368. doi:10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Rakitin, B.C. (2005). The effects of spatial stimulus-response compatibility on choice time production accuracy and variability. Journal of Experimental Psychology: Human Perception and Performance, 31(4), 685702. doi:10.1037/0096-1523.31.4.685Google ScholarPubMed
Rousseau, R., Picard, D., Pitre, E. (1984). An adaptive counter model for time estimation. Annals of the New York Academy of Sciences, 423, 639642. doi:10.1111/j.1749-6632.1984.tb23480.xCrossRefGoogle Scholar
Rowe, K.C., Paulsen, J.S., Langbehn, D.R., Duff, K., Beglinger, L.J., Wang, C., Moser, D.J. (2010). Self-paced timing detects and tracks change in prodromal Huntington disease. Neuropsychology, 24(4), 435442. doi:10.1037/a0018905CrossRefGoogle ScholarPubMed
Rueda, A.D., Schmitter-Edgecombe, M. (2009). Time estimation abilities in mild cognitive impairment and Alzheimer's disease. Neuropsychology, 23(2), 178188. doi:10.1037/a0014289CrossRefGoogle ScholarPubMed
Schneider, W., Eschman, A., Zuccolotto, A. (2002). E-Prime user's guide. Pittsburgh, PA: Psychology Software Tools, Inc.Google Scholar
Storandt, M., Grant, E.A., Miller, J.P., Morris, J.A. (2006). Longitudinal course and neuropathologic outcomes in original vs revised MCI and in pre-MCI. Neurology, 67(3), 467473. doi:10.1212/01.wnl.0000228231.26111.6eCrossRefGoogle ScholarPubMed
Storandt, M., Hill, R.D. (1989). Very mild senile dementia of the Alzheimer type: II. Psychometric test performance. Archives of Neurology, 46(4), 383386.CrossRefGoogle ScholarPubMed
Thurstone, L.L., Thurstone, L.G. (1949). Examiner manual for the SRA Primary Mental abilities Test. Chicago: Science Research Associates.Google Scholar
Tse, C.S., Balota, D.A., Yap, M.J., Duchek, J.M., McCabe, D.P. (2010). Effects of healthy aging and early stage dementia of the Alzheimer's type on components of response time distributions in three attentional tasks. Neuropsychology, 24, 300315. doi:10.1037/a0018274CrossRefGoogle Scholar
Tucker, A.M., Stern, Y., Basner, R.C., Rakitin, B.C. (2011). The prefrontal model revisited: Double dissociations between young sleep deprived and elderly subjects on cognitive components of performance. Sleep, 34(8), 10391050. doi:10.5665/sleep.1158CrossRefGoogle ScholarPubMed
Vanneste, S., Pouthas, V., Wearden, J.H. (2001). Temporal control of rhythmic performance: A comparison between young and old adults. Experimental Aging Research, 27(1), 83102. doi:10.1080/036107301750046151CrossRefGoogle ScholarPubMed
Wechsler, D. (1955). Wechsler Adult Intelligence Scale (Manual). San Antonio, TX: Psychological Corporation.Google Scholar
Wechsler, D., Stone, C.P. (1973). Manual: Wechsler Memory Scale. New York: Psychological Corporation.Google Scholar
Wing, A.M., Kristofferson, A.B. (1973). The timing of interresponse intervals. Perception & Psychophysics, 13(3), 455460.CrossRefGoogle Scholar
Woodruff-Pak, D.S., Jaeger, M.E. (1998). Predictors of eyeblink classical conditioning over the adult age span. Psychology and Aging, 13(2), 193205. doi:10.1037/0882-7974.13.2.193CrossRefGoogle ScholarPubMed
Zakay, D. (1998). Attention allocation policy influences prospective timing. Psychonomic Bulletin & Review, 5(1), 114118.CrossRefGoogle Scholar
Zakay, D., Block, R.A. (1997). Temporal cognition. Current Directions in Psychological Science, 6(1), 1216. doi:10.1111/1467-8721.ep11512604CrossRefGoogle Scholar