Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T16:21:26.134Z Has data issue: false hasContentIssue false

Influence of Serotonin Transporter Genotype and Catechol-O-Methyltransferase Val158Met Polymorphism on Recognition of Emotional Faces

Published online by Cambridge University Press:  04 October 2011

Michaela Defrancesco
Affiliation:
Department of General Psychiatry, Innsbruck Medical University, Innsbruck, Austria
Harald Niederstätter
Affiliation:
Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
Walther Parson
Affiliation:
Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
Herbert Oberacher
Affiliation:
Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
Hartmann Hinterhuber
Affiliation:
Department of General Psychiatry, Innsbruck Medical University, Innsbruck, Austria
Markus Canazei
Affiliation:
Bartenbach Lichtlabor, Innsbruck, Austria
Judith Bidner
Affiliation:
Department of General Psychiatry, Innsbruck Medical University, Innsbruck, Austria
Eberhard A. Deisenhammer
Affiliation:
Department of General Psychiatry, Innsbruck Medical University, Innsbruck, Austria
Georg Kemmler
Affiliation:
Department of General Psychiatry, Innsbruck Medical University, Innsbruck, Austria
Elisabeth M. Weiss
Affiliation:
Department of Biological Psychology, Karl Franzenzs University Graz, Graz, Austria
Josef Marksteiner*
Affiliation:
Department of Psychiatry and Psychotherapy A, LKH Hall, Hall, Austria
*
Correspondence and reprint requests to: Josef Marksteiner, Department of Psychiatry and Psychotherapy A, Milser Straße 10, LKH Hall, A-6060 Hall, Austria. E-mail: j.marksteiner@i-med.ac.at

Abstract

Monoamines, such as serotonin, dopamine, and norepinephrine, play a crucial role in the regulation of emotion processing and mood. In this study, we investigated how polymorphisms of the serotonin transporter (5-HTT) and catechol-O-methyltransferase (COMT) influence emotion recognition abilities. We recruited 88 female undergraduate students and assessed 5-HTT genotype and the COMT Val158Met polymorphism. The subjects completed two computerized tasks: The Penn Emotion Recognition Test (ER40) and the Penn Emotion Acuity Test (PEAT). For the ER40, we found that s-allele carriers performed significantly worse in the recognition of happy faces, but did better in the recognition of fearful faces, compared with homozygous l-carriers of the 5-HTT gene. Neither 5-HTT nor COMT genotypes influenced the ability to discriminate between different intensities of sadness or happiness on the PEAT. Moreover, there was no significant interaction between the two polymorphisms in their effect on performance on the ER40 or the PEAT. (JINS, 2011, 17, 1014–1020)

Type
Regular Articles
Copyright
Copyright © The International Neuropsychological Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beevers, C.G., Wells, T.T., Ellis, A.J., McGeary, J.E. (2009). Association of the serotonin transporter gene promoter region (5-HTTLPR) polymorphism with biased attention for emotional stimuli. Journal Abnormal Psychology, 118(3), 670681. doi:10.1037/a0016198CrossRefGoogle ScholarPubMed
Drabant, E.M., Hariri, A.R., Meyer-Lindenberg, A., Munoz, K.E., Mattay, V.S., Kolachana, B.S., Weinberger, D.R. (2006). Catechol O-methyltransferase val158met genotype and neural mechanisms related to affective arousal and regulation. Archives of General Psychiatry, 63(12), 13961406.CrossRefGoogle ScholarPubMed
El Mansari, M., Guiard, B.P., Chernoloz, O., Ghanbari, R., Katz, N., Blier, P. (2010). Relevance of norepinephrine-dopamine interactions in the treatment of major depressive disorder. CNS Neuroscience & Therapeutics, 16(3), e1e17. doi:10.1111/j.1755-5949.2010.00146.xCrossRefGoogle ScholarPubMed
Erwin, R.J., Gur, R.C., Gur, R.E., Skolnick, B., Mawhinney-Hee, M., Smailis, J. (1992). Facial emotion discrimination: I. Task construction and behavioral findings in normal subjects. Psychiatry Research, 42(3), 231240.CrossRefGoogle ScholarPubMed
Fox, E., Ridgewell, A., Ashwin, C. (2009). Looking on the bright side: Biased attention and the human serotonin transporter gene. Proceedings Biological Sciences, 276(1663), 17471751. doi:10.1098/rspb.2008.1788Google ScholarPubMed
Graf, W.D., Unis, A.S., Yates, C.M., Sulzbacher, S., Dinulos, M.B., Jack, R.M., Parson, W.W. (2001). Catecholamines in patients with 22q11.2 deletion syndrome and the low-activity COMT polymorphism. Neurology, 57(3), 410416.CrossRefGoogle ScholarPubMed
Hariri, A.R., Drabant, E.M., Munoz, K.E., Kolachana, B.S., Mattay, V.S., Egan, M.F., Weinberger, D.R. (2005). A susceptibility gene for affective disorders and the response of the human amygdala. Archives of General Psychiatry, 62(2), 146152.CrossRefGoogle ScholarPubMed
Haxby, J.V., Hoffman, E.A., Gobbini, M.I. (2002). Human neural systems for face recognition and social communication. Biological Psychiatry, 51(1), 5967. doi:10.1016/S0006-3223(01)01330-0CrossRefGoogle ScholarPubMed
Heils, A., Teufe, A., Petri, S., Stober, G., Riederer, P., Bengel, D., Lesch, K.P. (1996). Allelic variation of human serotonin transporter gene expression. Journal of Neurochemistry, 66(6), 26212624. doi:10.1046/j.1471-4159.1996.66062621.xCrossRefGoogle ScholarPubMed
Hu, X.Z., Lipsky, R.H., Zhu, G., Akhtar, L.A., Taubman, J., Greenberg, B.D., Goldman, D. (2006). Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. American Journal of Psychiatry, 78(5), 815826.Google ScholarPubMed
Kapur, S., Remington, G. (1996). Serotonin-dopamine interaction and its relevance to schizophrenia. American Journal of Psychiatry, 153(4), 466476.Google ScholarPubMed
Kohler, C.G., Turner, T.H., Gur, R.E., Gur, R.C. (2004). Recognition of facial emotions in neuropsychiatric disorders. CNS Spectrums, 9(4), 267274.CrossRefGoogle ScholarPubMed
Kohler, C.G., Turner, T., Stolar, N.M., Bilker, W.B., Brensinger, C.M., Gur, R.E., Gur, R.C. (2004). Differences in facial expressions of four universal emotions. Psychiatry Research, 128(3), 235244. doi:10.1016/j.psychres.2004.07.003CrossRefGoogle ScholarPubMed
Lachman, H.M., Papolos, D.F., Saito, T., Yu, Y.M., Szumlanski, C.L., Weinshilboum, R.M. (1996). Human catechol-O-methyltransferase pharmacogenetics: Description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics, 6(3), 243250. doi:10.1097/00008571-199606000-00007CrossRefGoogle ScholarPubMed
Lau, J.Y., Goldman, D., Buzas, B., Fromm, S.J., Guyer, A.E., Hodgkinson, C., Ernst, M. (2009). Amygdala function and 5-HTT gene variants in adolescent anxiety and major depressive disorder. Biological Psychiatry, 65(4), 349355. doi:10.1016/j.biopsych.2008.08.037CrossRefGoogle ScholarPubMed
Leber, S., Heidenreich, T., Stangier, U., Hofmann, S.G. (2009). Processing of facial affect under social threat in socially anxious adults: Mood matters. Depression and Anxiety, 26(2), 196206. doi:10.1002/da.20525CrossRefGoogle ScholarPubMed
Lonsdorf, T.B., Weike, A.I., Nikamo, P., Schalling, M., Hamm, A.O., Ohman, A. (2009). Genetic gating of human fear learning and extinction: Possible implications for gene-environment interaction in anxiety disorder. Psychological Science, 20(2), 198206. doi:10.1111/j.1467-9280.2009.02280.xCrossRefGoogle ScholarPubMed
Maren, S., Quirk, G.J. (2004). Neuronal signalling of fear memory. Nature Reviews Neuroscience, 5(11), 844852. doi:10.1038/nrn1535CrossRefGoogle ScholarPubMed
Neumeister, A., Konstantinidis, A., Stastny, J., Schwarz, M.J., Vitouch, O., Willeit, M., Kasper, S. (2002). Association between serotonin transporter gene promoter polymorphism (5HTTLPR) and behavioral responses to tryptophan depletion in healthy women with and without family history of depression. Archives of General Psychiatry, 59(7), 613620.CrossRefGoogle ScholarPubMed
Oberacher, H., Niederstatter, H., Casetta, B., Parson, W. (2005). Detection of DNA sequence variations in homo- and heterozygous samples via molecular mass measurements by electrospray ionization time-of-flight mass spectrometry. Analytic Chemistry, 77(15), 49995008. doi:10.1021/ac050399fCrossRefGoogle ScholarPubMed
Oberacher, H., Niederstatter, H., Parson, W. (2005). Characterization of synthetic nucleic acids by electrospray ionization quadrupole time-of-flight mass spectrometry. Journal Mass Spectrometry, 40(7), 932945. doi:10.1002/jms.870CrossRefGoogle ScholarPubMed
Pezawas, L., Meyer-Lindenberg, A., Drabant, E.M., Verchinski, B.A., Munoz, K.E., Kolachana, B.S., Weinberger, D.R. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: A genetic susceptibility mechanism for depression. Nature Neuroscience, 8(6), 828834. doi:10.1038/nn1463CrossRefGoogle ScholarPubMed
Salem, J.E., Kring, A.M., Kerr, S.L. (1996). More evidence for generalized poor performance in facial emotion perception in schizophrenia. Journal of Abnormal Psychology, 105(3), 480483. doi:10.1037/0021-843X.105.3.480CrossRefGoogle ScholarPubMed
Silver, H., Shlomo, N. (2001). Perception of facial emotions in chronic schizophrenia does not correlate with negative symptoms but correlates with cognitive and motor dysfunction. Schizophrenia Research, 52(3), 265273. doi:10.1016/S0920-9964(00)00093-1CrossRefGoogle Scholar
Smolka, M.N., Buhler, M., Schumann, G., Klein, S., Hu, X.Z., Moayer, M., Heinz, A. (2007). Gene-gene effects on central processing of aversive stimuli. Molecular Psychiatry, 12, 307317. doi:10.1038/sj.mp.4001946CrossRefGoogle ScholarPubMed
Smolka, M.N., Schumann, G., Wrase, J., Grusser, S.M., Flor, H., Mann, K., Heinz, A. (2005). Catechol-O-methyltransferase val158met genotype affects processing of emotional stimuli in the amygdala and prefrontal cortex. Journal of Neuroscience, 25(4), 836842. doi:10.1523/JNEUROSCI.1792-04.2005CrossRefGoogle ScholarPubMed
Surguladze, S.A., Elkin, A., Ecker, C., Kalidindi, S., Corsico, A., Giampietro, V., Phillips, M.L. (2008). Genetic variation in the serotonin transporter modulates neural system-wide response to fearful faces. Genes Brain and Behavior, 7(5), 543551. doi:10.1111/j.1601–183X.2008.00390.xCrossRefGoogle ScholarPubMed
Thomason, M.E., Henry, M.L., Paul, H.J., Joormann, J., Pine, D.S., Ernst, M., Gotlib, I.H. (2010). Neural and behavioral responses to threatening emotion faces in children as a function of the short allele of the serotonin transporter gene. Biological Psychology, 85(1), 3844. doi:10.1016/j.biopsycho.2010.04.009CrossRefGoogle ScholarPubMed
Tully, K., Bolshakov, V.Y. (2010). Emotional enhancement of memory: How norepinephrine enables synaptic plasticity. Molecular Brain, 3, 15. doi:10.1186/1756-6606-3-15CrossRefGoogle ScholarPubMed
Walsh, P.S., Metzger, D.A., Higuchi, R. (1991). Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques, 10(4), 506513.Google ScholarPubMed
Weiss, E.M., Stadelmann, E., Kohler, C.G., Brensinger, C.M., Nolan, K.A., Oberacher, H., Marksteiner, J. (2007). Differential effect of catechol-O-methyltransferase Val158Met genotype on emotional recognition abilities in healthy men and women. Journal of the International Neuropsychological Society, 13(5), 881887. doi:10.1017/S1355617707070932CrossRefGoogle ScholarPubMed