Skip to main content Accessibility help
×
Home

The Everyday Compensation (EComp) Questionnaire: Construct Validity and Associations with Diagnosis and Longitudinal Change in Cognition and Everyday Function in Older Adults

  • Sarah Tomaszewski Farias (a1), Jason Gravano (a2), Alyssa Weakley (a1), Maureen Schmitter-Edgecombe (a3), Danielle Harvey (a4), Dan Mungas (a1), Michelle Chan (a1) and Tania Giovannetti (a5)...

Abstract

Objective:

The Everyday Compensation scale (EComp) is an informant-rated questionnaire designed to measure cognitively based compensatory strategies that support both everyday memory and executive function in the context of completing instrumental activities of daily living (IADLs). Although previous findings provided early support for the usefulness of the initial version of EComp, the current paper further describes the development, refinement, and validation of EComp as a new assessment tool of compensation for IADLs.

Method:

Confirmatory factor analysis (CFA) was used to examine its factor structure. Convergent and predictive validity was evaluated by examining the relationship between EComp and markers of disease, including diagnosis, cognitive change, and trajectories of functional abilities.

Results:

CFA supported a general compensation factor after accounting for variance attributable to IADL domain-specific engagement. The clinical groups differed in compensatory strategy use, with those with dementia using significantly fewer compensatory strategies as compared to individuals with normal cognition or mild cognitive impairment. Greater levels of compensation were related to better cognitive functions (memory and executive function) and functional abilities, as well as slower rates of cognitive and functional decline over time. Importantly, higher levels of compensation were associated with less functional difficulties and subsequently slower rate of functional decline independent of the level of cognitive impairment.

Conclusions:

Engagement in compensatory strategies among older adults has important implications for prolonging functional independence, even in those with declining cognitive functioning. Results suggest that the revised EComp is likely to be useful in measuring cognitively based compensation in older adults.

Copyright

Corresponding author

*Correspondence and reprint requests to: Alyssa Weakley, University of California, Davis, 4860 Y St., Suite 3900 Sacramento, CA 95187, USA. Email: aweakley@ucdavis.edu

References

Hide All
Alzheimer’s Association. (2018). 2018 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 14(3), 367429.
Aronov, A., Rabin, L.A., Fogel, J., Chi, S.Y., Kann, S.J., Abdelhak, N., & Zimmerman, M.E. (2015). Relationship of cognitive strategy use to prospective memory performance in a diverse sample of nondemented older adults with varying degrees of cognitive complaints and impairment. Aging, Neuropsychology, and Cognition, 22(4), 486501.
Bentler, P.M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238246.
Bollen, K.A. (1989). Structural equations with latent variables. New York: Wiley.
Chudoba, L., Sawaqdeh, A., Dahmen, J., Brown, K., & Schmitter-Edgecombe, M. (In Press). The development of a Digital Memory Notebook intervention with case illustrations. Neuropsychological Rehabilitation.
Chudoba, L., Weakley, A., & Schmitter-Edgecombe, M. (2018). Who Knows Best?: Reliability of Informant- and Self-Reported Compensatory Strategies for Every Day Medication Use in Community-Dwelling Older Adults. Poster presented at the thirty-eight National Academy of Neuropsychology meeting, New Orleans, LA, October 18.
Cicerone, K. D., Dahlberg, C., Malec, J. F., Langenbahn, D. M., Felicetti, T., Kneipp, S., Ellmo, W., Kalmar, K., Giacino, J.T., Harley, J.P., & Laatsch, L.  , (2005). Evidence-based cognitive rehabilitation: updated review of the literature from 1998 through 2002. Archives of physical medicine and rehabilitation, 86(8), 16811692.
Cudeck, R. & Browne, M.W. (1983). Cross-validation of covariance structures. Multivariate Behavioral Research, 18, 147167.
Dassel, K.B. & Schmitt, F.A. (2008). The impact of caregiver executive skills on reports of patient functioning. The Gerontologist, 48, 781792.
de Frias, C.M. & Dixon, R.A. (2005). Confirmatory factor structure and measurement invariance of the Memory Compensation Questionnaire. Psychological Assessment, 17(2), 168.
Denny, K.G. & Tomaszewski-Farias, S. (2017). A multi-modal intervention to enhance cognitive compensation strategies and promote brain health activities. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 13(7), P824.
Denny, K.G., Barbra, C., & Tomaszewski-Farias, S. (2017). Long-term change associated with a multi-modal intervention to enhance cognitive compensation strategies and promote brain health activities. Poster presented at the International Neuropsychological Society meeting. New Orleans, LA, February 3.
Dixon, R.A., de Frias, C.M., & Bäckman, L. (2001). Characteristics of self-reported memory compensation in older adults. Journal of Clinical and Experimental Neuropsychology, 23(5), 650661.
Early, D.R., Widaman, K.F., Harvey, D., Beckett, L., Park, L.Q., Farias, S.T., Reed, BR., DeCarli, C., & Mungas, D. (2013). Demographic predictors of cognitive change in ethnically diverse older persons. Psychology and Aging, 28(3), 633.
Freedman, V.A., Martin, L.G., & Schoeni, R.F. (2002). Recent trends in disability and functioning among older adults in the United States: A systematic review. JAMA, 288(24), 31373146.
Greenaway, M.C., Duncan, N.L., & Smith, G.E. (2013). The memory support system for mild cognitive impairment: Randomized trial of a cognitive rehabilitation intervention. International Journal of Geriatric Psychiatry, 28(4), 402409.
Hinton, L., Carter, K., Reed, B.R., Beckett, L., Lara, E., DeCarli, C., & Mungas, D. (2010). Recruitment of a community-based cohort for research on diversity and risk of dementia. Alzheimer disease and associated disorders, 24(3), 234.
Holzinger, K.J. & Swineford, S. (1937). The bi-factor method. Psychometrika, 47, 4154.
Hu, L.T. & Bentler, P.M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological methods, 3(4), 424453.
Hutchens, R.L., Kinsella, G.J., Ong, B., Pike, K.E., Parsons, S., Storey, E., Ames, D., Saling, M.M., Mullaly, E., Rand, E. & Clare, L. (2012). Knowledge and use of memory strategies in amnestic mild cognitive impairment. Psychology and Aging, 27(3), 768.
Jennrich, R.I. & Bentler, P.M. (2011). Exploratory bi-factor analysis. Psychometrika, 76, 537549.
Lau, K.M., Parikh, M., Harvey, D.J., Huang, C.J., & Farias, S.T. (2015). Early cognitively based functional limitations predict loss of independence in instrumental activities of daily living in older adults. Journal of the International Neuropsychological Society, 21(9), 688698.
Lawton, M.P. & Brody, E.M. (1969). Assessment of older people: Self-maintaining and instrumental activities of daily living. The gerontologist, 9(3_Part_1), 179186.
Marshall, G.A., Rentz, D.M., Frey, M.T., Locascio, J.J., Johnson, K.A., & Sperling, R.A. (2011). Executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer’s disease. Alzheimer’s & Dementia, 7, 300308.
McAlister, C. & Schmitter-Edgecombe, M. (2016). Everyday functioning and cognitive correlates in healthy older adults with subjective cognitive concerns. The Clinical Neuropsychologist, 30, 10871103.
McAlister, C., Schmitter-Edgecombe, M., & Lamb, R. (2016). Examination of variables that may affect the relationship between cognition and functional status in individuals with mild cognitive impairment: a meta-analysis. Archives of Clinical Neuropsychology, 31, 123147.
McDonald, R.P. (1999) Test theory: A unified treatment. Mahwah, NJ: Erlbaum.
Morris, J.C., Weintraub, S., Chui, H.C., Cummings, J., DeCarli, C., Ferris, S., Foster, N.L., Galasko, D., Graff-Radford, N., Peskind, E.R., & Beekly, D. (2006). The Uniform Data Set (UDS): clinical and cognitive variables and descriptive data from Alzheimer Disease Centers. Alzheimer Disease & Associated Disorders, 20(4), 210216.
Mungas, D., Beckett, L., Harvey, D., Tomaszewski Farias, S., Reed, B., Carmichael, O., Olichney, J., Miller, J., & DeCarli, C. (2010). Heterogeneity of cognitive trajectories in diverse older persons. Psychology and aging, 25(3), 606.
Mungas, D., Reed, B.R., Crane, P.K., Haan, M.N., & González, H. (2004). Spanish and English Neuropsychological Assessment Scales (SENAS): Further development and psychometric characteristics. Psychological assessment, 16(4), 347.
Mungas, D., Reed, B.R., Haan, M.N., & González, H. (2005). Spanish and English Neuropsychological Assessment Scales: Relationship to demographics, language, cognition, and independent function. Neuropsychology, 19(4), 466.
Muthén, B.O., In Bollen, K.A. & Long, J.S. (1993). Goodness of fit with categorical and other non-normal variables (Eds.), Testing structural equation models, (pp. 205243). Newbury Park, CA: Sage.
Muthén, L.K. & Muthén, B.O. (2007). Mplus User’s Guide (6th ed.). Los Angeles, CA: Muthén & Muthén.
Pereira, F.S., Yassuda, M.S., Oliveira, A.M., & Forlenza, O.V. (2008). Executive dysfunction correlates with impaired functional status in older adults with varying degrees of cognitive impairment. International Psychogeriatrics, 20(6), 11041115.
Richardson, E.D., Nadler, J.D., & Malloy, P.F. (1995). Neuropsychologic prediction of performance measures of daily living skills in geriatric patients. Neuropsychology, 9, 565572.
Rog, L.A., Park, L.Q., Harvey, D.J., Huang, C.J., Mackin, S., & Farias, S.T. (2014). The independent contributions of cognitive impairment and neuropsychiatric symptoms to everyday function in older adults. The Clinical Neuropsychologist, 28(2), 215236.
Royall, D.R., Lauterbach, E.C., Kaufer, D., Malloy, P., Coburn, K.L., & Black, K.J. (2007). The cognitive correlates of functional status: A review from the Committee on Research of the American Neuropsychiatric Association. The Journal of neuropsychiatry and clinical neurosciences, 19(3), 249265.
Schmitter-Edgecombe, M. & Dyck, D.G. (2014). Cognitive rehabilitation multi-family group intervention for individuals with mild cognitive impairment and their care-partners. Journal of the International Neuropsychological Society, 20(09), 897908.
Schmitter–Edgecombe, M., McAlister, C., & Weakley, A. (2012). Naturalistic assessment of everyday functioning in individuals with mild cognitive impairment: The day-out task. Neuropsychology, 26, 631641.
Schmitter-Edgecombe, M. & Parsey, C. (2014). Assessment of functional change and cognitive correlates in the progression from normal aging to dementia. Neuropsychology, 28, 881893.
Schmitter-Edgecombe, M., Parsey, C., & Lamb, R. (2014). Development and psychometric properties of the instrumental activities of daily living – compensation scale (IADL-C). Archives of Clinical Neuropsychology, 29, 776792.
Tomaszewski Farias, S., Cahn-Weiner, D.A., Harvey, D.J., Reed, B.R., Mungas, D., Kramer, J.H., & Chui, H. (2009). Longitudinal changes in memory and executive functioning are associated with longitudinal change in instrumental activities of daily living in older adults. The Clinical Neuropsychologist, 23(3), 446461.
Tomaszewski Farias, S., Chou, E, Harvey, D.J, Mungas, D, Reed, B.R., & DeCarli, C. (2013). Longitudinal trajectories of everyday function by diagnostic status. Psychology and Aging, 28(4), 10701075.
Tomaszewski Farias, S., Lau, K., Harvey, D., Denny, K.G., Barba, C., & Mefford, A.N. (2017). Early functional limitations in cognitively normal older adults predict diagnostic conversion to mild cognitive impairment. Journal of the American Geriatrics Society, 65(6), 11521158.
Tomaszewski Farias, S., Mungas, D., Reed, B.R., Cahn-Weiner, D., Jagust, W., Baynes, K., & DeCarli, C. (2008). The measurement of everyday cognition (ECog): Scale development and psychometric properties. Neuropsychology, 22(4), 531544.
Tomaszewski Farias, S., Mungas, D., Reed, B.R., Harvey, D., Cahn-Weiner, D., & DeCarli, C. (2006). MCI is associated with deficits in everyday functioning. Alzheimer Disease and Associated Disorders, 20, 217223.
Tomaszewski Farias, S., Schmitter-Edgecombe, M., Weakley, A., Harvey, D., Denny, K.G., Barba, C., Gravano, J.T., Giovannetti, T., & Willis, S. (2018). Compensation Strategies in Older Adults: Association With Cognition and Everyday Function. American Journal of Alzheimer’s Disease & Other Dementias, 33(3), 184191.
Troyer, A.K., Murphy, K.J., Anderson, N.D., Moscovitch, M., & Craik, F.I. (2008). Changing everyday memory behaviour in amnestic mild cognitive impairment: A randomised controlled trial. Neuropsychological Rehabilitation, 18(1), 6588.
Troyer, A.K. & Rich, J.B. (2002). Psychometric properties of a new metamemory questionnaire for older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 57(1), P19P27.
Tucker, L.R. & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 110.
Yu, C.Y. (2002). Evaluation of model fit indices for latent variable models with categorical and continuous outcomes. Paper presented at the annual conference of the American Educational Research Association, New Orleans, April 4, 2002.
Zissimopoulos, J., Crimmins, E., & Clair, P.S. (2015). The value of delaying Alzheimer’s disease onset. Forum for Health Economics and Policy, 18(1), 2539.

Keywords

Type Description Title
WORD
Supplementary materials

Tomaszewski Farias et al. supplementary material
Table S1

 Word (13 KB)
13 KB

The Everyday Compensation (EComp) Questionnaire: Construct Validity and Associations with Diagnosis and Longitudinal Change in Cognition and Everyday Function in Older Adults

  • Sarah Tomaszewski Farias (a1), Jason Gravano (a2), Alyssa Weakley (a1), Maureen Schmitter-Edgecombe (a3), Danielle Harvey (a4), Dan Mungas (a1), Michelle Chan (a1) and Tania Giovannetti (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed