Skip to main content Accessibility help

A Comparison of Mental Workload in Individuals with Transtibial and Transfemoral Lower Limb Loss during Dual-Task Walking under Varying Demand

  • Emma P. Shaw (a1) (a2) (a3), Jeremy C. Rietschel (a2) (a4), Brad D. Hendershot (a3) (a5) (a6), Alison L. Pruziner (a3) (a5) (a6), Erik J. Wolf (a3) (a5) (a6), Christopher L. Dearth (a3) (a5) (a7), Matthew W. Miller (a8) (a9), Bradley D. Hatfield (a1) (a2) and Rodolphe J. Gentili (a1) (a2) (a10)...


Objectives: This study aimed to evaluate the influence of lower limb loss (LL) on mental workload by assessing neurocognitive measures in individuals with unilateral transtibial (TT) versus those with transfemoral (TF) LL while dual-task walking under varying cognitive demand. Methods: Electroencephalography (EEG) was recorded as participants performed a task of varying cognitive demand while being seated or walking (i.e., varying physical demand). Results: The findings revealed both groups of participants (TT LL vs. TF LL) exhibited a similar EEG theta synchrony response as either the cognitive or the physical demand increased. Also, while individuals with TT LL maintained similar performance on the cognitive task during seated and walking conditions, those with TF LL exhibited performance decrements (slower response times) on the cognitive task during the walking in comparison to the seated conditions. Furthermore, those with TF LL neither exhibited regional differences in EEG low-alpha power while walking, nor EEG high-alpha desynchrony as a function of cognitive task difficulty while walking. This lack of alpha modulation coincided with no elevation of theta/alpha ratio power as a function of cognitive task difficulty in the TF LL group. Conclusions: This work suggests that both groups share some common but also different neurocognitive features during dual-task walking. Although all participants were able to recruit neural mechanisms critical for the maintenance of cognitive-motor performance under elevated cognitive or physical demands, the observed differences indicate that walking with a prosthesis, while concurrently performing a cognitive task, imposes additional cognitive demand in individuals with more proximal levels of amputation.


Corresponding author

Correspondence and reprint requests to: Rodolphe J. Gentili, Department of Kinesiology, School of Public Health (Bldg #255), University of Maryland, Room #2138, College Park, MD 20742, USA. E-mail:


Hide All
Alderman, B.L., Olson, R.L., Bates, M.E., Selby, E.A., Buckman, J.F., Brush, C.J., Panza, E.A., Kranzler, A., Eddie, D., & Shors, T.J. (2015). Rumination in major depressive disorder is associated with impaired neural activation during conflict monitoring. Frontiers in Human Neuroscience, 9, 296.
Babu Henry Samuel, I., Wang, C., Hu, Z., & Ding, M. (2018) The frequency of alpha oscillations: Task-dependent modulation and its functional significance. Neuroimage, 183, 897906.
Baldwin, C.L., Roberts, D.M., Barragan, D., Lee, J.D., Lerner, N., & Higgins, J.S. (2017). Detecting and quantifying mind wandering during simulated driving. Frontiers in Human Neuroscience, 11, 406.
Basar-Eroglu, C., Struber, D., Schurmann, M., Stadler, M., & Basar, E. (1996). Gamma-band responses in the brain: A short review of psychophysiological correlates and functional significance. International Journal of Psychophysiology, 24, 101112.
Beurskens, R., Steinberg, F., Antoniewicz, F., Wolff, W., & Granacher, U. (2016). Neural correlates of dual-task walking: Effects of cognitive versus motor interference in young adults. Neural Plasticity, 2016, 9.
Bhatnagar, V., Richard, E., Melcer, T., Walker, J., & Galarneau, M. (2015). Lower-limb amputation and effect of posttraumatic stress disorder on Department of Veterans Affairs outpatient cost trends. The Journal of Rehabilitation of Research Development, 52(7), 827–38.
Bhuvaneswar, C.G., Epstein, L.A., & Stern, T.A. (2007). Reactions to amputation: Recognition and treatment. Primary Care Companion to The Journal of Clinical Psychiatry, 9(4), 303308.
Borghini, G., Arico, P., Di Flumeri, G., Cartocci, G., Colosimo, A., Bonelli, S., Golfetti, A., Imbert, J.P., Granger, G., Benhacene, R., Pozzi, S., & Babiloni, F. (2017). EEG-based cognitive control behavior assessment: An ecological study with professional air traffic controllers. Scientific Reports, 7, 547.
Braboszcz, C., & Delorme, A. (2011). Lost in thoughts: Neural markers of low alertness during mind wandering. NeuroImage, 54, 30403047.
Bradford, J.C., Lukos, J.R., & Ferris, D.P. (2016). Electrocortical activity distinguishes between uphill and level walking in humans. Journal of Neurophysiology, 115, 958966.
Brooks, J. & Kerick, S. (2015). Event-related alpha perturbations related to the scaling of steering wheel corrections. Physiology & Behavior, 149, 287293.
Castermans, T., Duvinage, M., Cheron, G., & Dutoit, T. (2014). About the cortical origin of the low-delta and high-gamma rhythms observed in EEG signals during treadmill walking. Neuroscience Letters, 561, 166170.
Cheng, M.Y., Hung, C.L., Huang, C.J., Chang, Y.K., Lo, L.-C., Shen, C., & Hung, T.M. (2015). Expert-novice differences in SMR activity during dart throwing. Biological Psychology, 110, 212218.
Chuang, L.Y., Huang, C.J., & Hung, T.M. (2013). The differences in frontal midline theta power between successful and unsuccessful basketball free throws of elite basketball players. International Journal of Psychophysiology, 90(3), 321328.
De Sanctis, P., Butler, J.S., Malcolm, B.R., & Foxe, J.J. (2014). Recalibration of inhibitory control systems during walking-related dual-task interference: A mobile brain-body imaging (MOBI) study. NeuroImage, 94, 5564.
Dyke, F.B., Leiker, A.M., Grand, K.F., Godwin, M.M., Thompson, A.G., Rietschel, J.C., McDonald, C.G., & Miller, M. W. (2015). The efficacy of auditory probes in indexing cognitive workload is dependent on stimulus complexity. International Journal of Psychophysiology, 95(1), 5662.
Gentili, R.J., Bradberry, T.J., Oh, H., Hatfield, B.D., & Contreras-Vidal, J.L. (2011). Cerebral cortical dynamics during visuomotor transformation: Adaptation to a cognitive-motor executive challenge. Psychophysiology, 48, 813824.
Gentili, R.J., Jaquess, K.J., Shuggi, I.M., Shaw, E.P., Oh, H., Lo, L.-C., Tan, Y.Y., Domingues, C.A., Blanco, J.A., Rietschel, J.C., Miller, M.W., & Hatfield, B.D. (2018). Combined assessment of attentional reserve and cognitive-motor effort under various levels of challenge with a dry EEG system. Psychophysiology, 55(6), e13059.
Gevins, A., & Smith, M.E. (2003). Neurophysiological measures of cognitive workload during human-computer interaction. Theoretical Issues in Ergonomics Science, 4(1–2), 113131.
Gwin, J.T., Gramann, K., Makeig, S., & Ferris, D.P. (2010). Removal of movement artifact from high-density EEG recorded during walking and running. Journal of Neurophysiology, 103, 35263534.
Hart, S.G. & Staveland, L.E. (1988). Development of NASA-TLX (task load index): Results of empirical and theoretical research. In Hancock, P. A. & Meshkati, N. (Eds.). Human mental workload. Amsterdam: North Holland Press.
Hockey, G.R.J., Nickel, P., Roberts, A.C., & Roberts, M.H. (2009). Sensitivity of candidate markers of psychophysiological strain to cyclical changes in manual control load during simulated process control. Applied Ergonomics, 40(6), 10111018.
Holm, A., Lukander, K., Korpela, J., Sallinen, M., & Müller, K.M.I. (2009). Estimating brain load from the EEG. The Scientific World Journal, 9, 639651.
Howard, M.W., Rizzuto, D.S., Caplan, J.B., Madsen, J.R., Lisman, J., Aschenbrenner-Schebe, R., Schulze-Bonhage, A., & Kahana, M.J. (2003). Gamma oscillations correlate with working memory load in humans. Cerebral Cortex, 13, 13691374.
Howard, C.L., Wallace, C., Abbas, J., & Stokic, D.S. (2017). Residual standard deviation: Validation of a new measure of dual-task cost in below-knee prosthesis users. Gait & Posture, 51, 9196.
Jaiswal, N., Ray, W., & Slobounov, S. (2010). Encoding of visual-spatial information in working memory requires more cerebral efforts than retrieval: Evidence from EEG and virtual reality study. Brain Research, 1347, 8089.
Jaquess, K.J., Lo, L.C., Oh, H., Lu, C., Ginsberg, A., Tan, Y.Y., Lohse, K.R., Miller, M.W., Hatfield, B.D., & Gentili, R.J. (2018). Changes in mental workload and motor performance throughout multiple practice sessions under various levels of task difficulty. Neuroscience, 393, 305318.
Kao, S.C., Huang, C.J., & Hung, T.M. (2013). Frontal midline theta is a specific indicator of optimal attentional engagement during skilled putting performance. Journal of Sport & Exercise Psychology, 35(5), 470478.
Kerick, S.E., Hatfield, B.D., & Allender, L.E. (2007). Event-related cortical dynamics of soldiers during shooting as a function of varied task demand. Aviation, Space, and Environmental Medicine, 78(5), B153B164.
Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research, 29, 169195.
Kline, J.E., Huang, H.J., Snyder, K.L., & Ferris, D.P. (2015). Isolating gait-related movement artifacts in electroencephalography during human walking. Journal of Neural Engineering, 12, 046022.
Lobo, I., Portugal, L.C., Figueira, I., Volchan, E., David, I., Pereira, M.G., & de Oliveira, L. (2015). EEG correlates of the severity of posttraumatic stress symptoms: A systematic review of the dimensional PTSD literature. Journal of Affective Disorders, 183, 210220.
Lockhart, T. & Liu, J. (2008). Differentiating fall-prone and healthy adults using local dynamics stability. Ergonomics, 51(12), 18601872.
Malcolm, B.R., Foxe, J.J., Butler, J.S., & De Sanctis, P. (2015). The aging brain shows less flexible reallocation of cognitive resources during dual-task walking: A mobile brain/body imaging (MoBI) study. NeuroImage, 117, 230242.
Marcar, V.L., Bridenbaugh, S.A., Kool, J., Niedermann, K., & Kressig, R.W. (2014). A simple procedure to synchronize concurrent measurements of gait and brain electrical activity and preliminary results from a pilot measurement involving motor-cognitive dual-tasking in healthy older and young volunteers. Journal of Neuroscience Methods, 228, 4649.
Michels, L., Bucher, K., Lüchinger, R., Klaver, P., Martin, E., Jeanmonod, D., & Brandeis, D. (2010). Simultaneous EEG-fMRI during a working memory task: Modulations in low and high frequency bands. PLoS One, 5(4), e10298.
Miller, W.C., Speechley, M., & Deathe, B. (2001). The prevalence and risk factors of falling and fear of falling among lower extremity amputees. Archives of Physical Medicine and Rehabilitation, 82(8), 10311037.
Morgan, S.J., Hafner, B.J., & Kelly, V.E. (2015). The effects of a concurrent task on walking in persons with transfemoral amputation compared to persons without limb loss. Prosthetics and Orthotics International, 40(4), 490496.
Morgan, S.J., Hafner, B.J., & Kelly, V.E. (2017). Dual-task walking over a compliant foam surface: A comparison of people with transfemoral amputation and controls. Gait & Posture, 58, 4145.
Morgenroth, D., Orendurff, M., Shakir, A., Segal, A., Shofer, J., & Czerniecki, J. (2010). The relationship between lumbar spine kinematics during gait and low-back pain in transfemoral amputees. American Journal of Physical Medicine & Rehabilitation, 89(8), 635643.
Murray, N.P. & Janelle, C.M. (2007). Event-related potential evidence for the processing efficiency theory. Journal of Sports Science, 25(2), 161171.
Nathan, K. & Contreras-Vidal, J.L. (2016). Negligible motion artifacts in scalp electroencephalography (EEG) during treadmill walking. Frontiers in Human Neuroscience, 9, 708.
Onton, J., Westerfield, M., Townsend, J., & Makeig, S. (2006). Imaging human EEG dynamics using independent component analysis. Neuroscience and Biobehavioral Reviews, 30, 808822.
Pascalis, D. & Ray, W.J. (1998). Effects of memory load on event-related patterns of 40-Hz EEG during cognitive and motor tasks. International Journal of Psychophysiology, 28, 301315.
Pizzagalli, D.A. (2007). Electroencephalography and high-density electrophysiological source localization disorders, In Cacioppo, J.T., Tassinary, L.G., & Berntson, G. (Eds.), Handbook of psychophysiology (pp. 6061). New York: Cambridge University Press.
Pruziner, A.L., Shaw, E.P., Rietschel, J.C., Hendershot, B.D., Miller, M.M., Wolf, E.J., Hatfield, B.D., Dearth, C.L., & Gentili, R.J. (2019) Biomechanical and neurocognitive performance outcomes of walking with transtibial limb loss while challenged by a concurrent task. Experimental Brain Research, 237(2), 477491.
Reis, P.M.R., Hebenstreit, F., Gabsteiger, F., von Tscharner, V., & Lochmann, M. (2014). Methodological aspects of EEG and body dynamics measurements during motion. Frontiers in Human Neuroscience, 8, 156.
Rietschel, J.C., Miller, M.W., Gentili, R.J., Goodman, R.N., McDonald, C.G., & Hatfield, B.D. (2012). Cerebral-cortical networking and activation increase as a function of cognitive-motor task difficulty. Biological Psychology, 90, 127133.
Shaw, E.P., Rietschel, J.C., Hendershot, B.D., Pruziner, A.L., Miller, M.M., Hatfield, B.D., & Gentili, R.J. (2018). Measurement of attentional reserve and mental effort for cognitive workload assessment under various task demands during dual-task walking. Biological Psychology, 134, 3951.
Sipp, A.R., Gwin, J.T., Makeig, S., & Ferris, D.P. (2013). Loss of balance during beam walking elicits a multifocal theta band electrocortical response. Journal of Neurophysiology, 110, 20502060.
Slobounov, S.M., Ray, W., Johnson, B., Slobounov, E., & Newell, K.M. (2015). Modulation of cortical activity in 2D versus 3D virtual reality environments: An EEG study. International Journal of Psychophysiology, 95(3), 254260.
Slobounov, S.M., Teel, L., & Newell, K.M. (2013). Modulation of cortical activity in response to visually induced postural perturbation: Combined VR and EEG study. Neuroscience Letters, 547, 69.
Wagner, J., Solis-Escalante, T., Grieshofer, P., Neuper, C., Müller-Putz, G.R., & Scherer, R. (2012). Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. NeuroImage, 63, 12031211.
Wagner, J., Solis-Escalante, T., Scherer, R., Neuper, C., & Muller-Putz, G. (2014). It’s how you get there: Walking down a virtual alley activates premotor and parietal areas. Frontiers in Human Neuroscience, 9, 93.
Wang, C., Rajagovindan, R., Han, S.M., & Ding, M. (2016). Top-down control of visual alpha oscillations: Sources of control signals and their mechanisms of action. Frontiers in Human Neuroscience, 10, 15.


Type Description Title
Supplementary materials

Shaw et al. supplementary material
Shaw et al. supplementary material 1

 Word (32 KB)
32 KB
Supplementary materials

Shaw et al. supplementary material
Shaw et al. supplementary material 2

 Word (222 KB)
222 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed