Skip to main content Accessibility help
×
Home

Community Outcome in Cognitively Normal Schizophrenia Patients

  • Eva Muharib (a1), R. Walter Heinrichs (a1), Ashley Miles (a1), Farena Pinnock (a1), Stephanie McDermid Vaz (a2) (a3) and Narmeen Ammari (a1)...

Abstract

Recent reports suggest that cognition is relatively preserved in some schizophrenia patients. However, little is known about the functional advantage these patients may demonstrate. The purpose of this study was to identify cognitively normal patients with a recently developed test battery and to determine the functional benefit of this normality relative to cognitively impaired patients. Average-range cognitive ability was defined by the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB) composite score (T≥40) and applied to 100 patients with schizophrenia or schizoaffective disorder and to 81 non-psychiatric research participants. With group assignment adjusted for demographic variables, this procedure yielded 14 cognitively normal patients, 21 cognitively impaired patients, and 21 healthy adults with normal-range MCCB scores. Cognitively normal patients were indistinguishable from controls across all MCCB scales. Furthermore, their performance was superior to impaired patients on all scales except Social Cognition. Cognitively normal patients were also superior to impaired patients on a summary index of simulated life skills and functional competence. Nevertheless, both patient groups were equally disadvantaged relative to controls in independent community living. These findings suggest that normal-range cognition exists in schizophrenia, but fails to translate into enhanced community outcome. (JINS, 2014, 20, 1–7)

Copyright

Corresponding author

Correspondence and reprint requests to: Eva Muharib, Department of Psychology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3. E-mail: evarsm@yorku.ca.

References

Hide All
Albert, N., Bertelsen, M., Thorup, A., Petersen, L., Jeppesen, P., Le Quack, P., Nordentoft, M. (2011). Predictors of recovery from psychosis analyses of clinical and social factors associated with recovery among patients with first-episode psychosis after 5 years. Schizophrenia Research, 125, 257266.
Ammari, N., Heinrichs, R.W., & Miles, A.A. (2010). An investigation of 3 neurocognitive subtypes in schizophrenia. Schizophrenia Research, 121, 3238.
August, S.M., Kiwanuka, J.N., McMahon, R.P., & Gold, J.M. (2012). The MATRICS Consensus Battery (MCCB): Clinical and cognitive correlates. Schizophrenia Research, 134, 7682.
Bowie, C.R., & Harvey, P.D. (2006). Cognitive deficits and functional outcome in schizophrenia. Journal of Neuropsychiatric Disease and Treatment, 2, 531536.
Bowie, C.R., McGurk, S.R., Mausbach, B., Patterson, T.L., & Harvey, P.D. (2012). Combined cognitive remediation and functional skills training for schizophrenia: Effects on cognition, functional competence, and real-world behavior. American Journal of Psychiatry, 169, 1018.
Bowie, C.R., Reichenberg, A., Patterson, T.L., Heaton, R.K., & Harvey, P.D. (2006). Determinants of real-world functional performance in schizophrenia subjects: Correlations with cognition, functional capacity, and symptoms. American Journal of Psychiatry, 163, 418425.
Bowie, C.R., Twamley, E.W., Anderson, H., Halpern, B., Patterson, T.L., & Harvey, P.D. (2007). Self-assessment of functional status in schizophrenia. Journal of Psychiatric Research, 41, 10121018.
Bromley, E., Mikesell, L., Mates, A., Smith, M., & Brekke, J.S. (2012). A video ethnography approach to assessing the ecological validity of neurocognitive and functional measures in severe mental illness: Results from a feasibility study. Schizophrenia Bulletin, 38, 981991.
Dickinson, D., Ramsey, M.E., & Gold, J.M. (2007). Overlooking the obvious: A meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives of General Psychiatry, 64(5), 532542.
Dickinson, D., Tenhula, W., Morris, S., Brown, C., Peer, J., Spencer, K., Bellack, A.S. (2010). A randomized, controlled trial of computer-assisted cognitive remediation for schizophrenia. The American Journal of Psychiatry, 167, 170180.
Eack, S.M., Greeno, C.G., Pogue-Geile, M.F., Newhill, C.E., Hogarty, G.E., & Keshavan, M.S. (2010). Assessing social-cognitive deficits in schizophrenia with the Mayer-Salovey-Caruso Emotional Intelligence Test. Schizophrenia Bulletin, 36(2), 370380.
Fett, A.K., Viechtbauer, W., Dominguez, M.D., Penn, D.L., van Os, J., & Krabbendam, L. (2011). The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: A meta-analysis. Neuroscience and Biobehavioral Reviews, 35(3), 573588.
First, M.B., Spitzer, R.L., Gibbon, M., & Williams, J.B. (1996). Structured clinical interview for DSM-IV axis I disorders: Non-patient edition (SCID-I/NP). New York: New York.
Green, M.F., Kern, R.S., Braff, D.L., & Mintz, J. (2000). Neurocognitive deficits and functional outcome in schizophrenia: Are we measuring the “right stuff”? Schizophrenia Bulletin, 26(1), 119136.
Harvey, P.D., Keefe, R.S., Patterson, T.L., Heaton, R.K., & Bowie, C.R. (2009). Abbreviated neuropsychological assessment in schizophrenia: Prediction of different aspects of outcome. Journal of Clinical and Experimental Neuropsychology, 31, 462471.
Heinrichs, R.W. (2005). The primacy of cognition in schizophrenia. American Psychologist, 60(3), 229242.
Heinrichs, R.W., Miles, A., Smith, D., Zargarian, T., McDermid Vaz, S., Goldberg, J.O., &Ammari, N. (2008). Cognitive, clinical, and functional characteristics of verbally superior schizophrenia patients. Neuropsychology, 22(3), 321328.
Heinrichs, R.W., & Zakzanis, K.K. (1998). Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology, 12, 426445.
Jaeger, J., Berns, S.M., & Czobor, P. (2003). The multidimensional scale of independent functioning: A new instrument for measuring functional disability in psychiatric populations. Schizophrenia Bulletin, 29(1), 153167.
Kern, R.S., Nuechterlein, K.H., Green, M.F., Baade, L.E., Fenton, W.S., Gold, J.M., Marder, S.R. (2008). The MATRICS Consensus Cognitive Battery, Part 2: Co-norming and standardization. The American Journal of Psychiatry, 165, 214220.
Kern, R.S., Gold, J.M., Dickinson, D., Green, M.F., Nuechterlein, K.H., Baade, L.E., Marder, S.R. (2011). The MCCB impairment profile for schizophrenia outpatients: Results from the MATRICS psychometric and standardization study. Schizophrenia Research, 126, 124131.
Kremen, W.S., Seidman, L.J., Faraone, S.V., Toomey, R., & Tsuang, M.T. (2000). The paradox of normal neuropsychological function in schizophrenia. Journal of Abnormal Psychology, 109(4), 743752.
Kremen, W.S., Seidman, L.J., Faraone, S.V., & Tsuang, M.T. (2001). Intelligence quotient and neuropsychological profiles in patients with schizophrenia and normal volunteers. Society of Biological Psychiatry, 50, 453462.
Leung, W.W., Bowie, C.R., & Harvey, P.D. (2008). Functional implications of neuropsychological normality and symptom remission in older outpatients diagnosed with schizophrenia: A cross-sectional study. Journal of International Neuropsychological Society, 14, 479488.
MacCabe, J.H., Brebion, G., Reichenberg, A., Ganguly, T., McKenna, P.J., Murray, R.M., & David, A.S. (2012). Superior intellectual ability in schizophrenia: Neuropsychological characteristics. Neuropsychology, 26(2), 181190.
McKibbin, C.L., Brekke, J.S., Sires, D., Jeste, D.V., & Thomas, L.P. (2004). Direct assessment of functional abilities: Relevance to persons with schizophrenia. Schizophrenia Research, 72, 5367.
Nuechterlein, K.H., Green, M.F., Kern, R.S., Baade, L.E., Barch, D.M., Cohen, J.D., Marder, S.R. (2008). The MATRICS Consensus Cognitive Battery, part 1: Test selection, reliability, and validity. The American Journal of Psychiatry, 165(2), 203213.
Opler, L.A., Kay, S.R., Lindenmayer, J.P., & Fiszbein, A. (1999). Structured clinical interview: The Positive and Negative Syndrome Scale (SCI-PANSS). North Tonawanda, NY: Multi-Health Systems Inc.
Palmer, B.W., Keaton, R.K., Paulsen, J.S., Kuck, J., Braff, D., Harris, M.J., Jeste, D.V. (1997). Is it possible to be schizophrenic yet neuropsychologically normal? Neuropsychology, 11(3), 437446.
Patterson, T.L., Goldman, S., McKibbin, C.L., Hughs, T., & Jeste, D.V. (2001). UCSD performance-based skills assessment: Development of a new measure of everyday functioning for severely mentally ill adults. Schizophrenia Bulletin, 27(2), 235245.
Psychological Corporation. (1999). Wechsler Abbreviated Scale of Intelligence (WASI) manual. San Antonio, TX: Psychological Corporation.
Schmidt, S.J., Mueller, D.R., & Roder, V. (2011). Social cognition as a mediator variable between neurocognition and functional outcome in schizophrenia: Empirical review and new results by structural equation modeling. Schizophrenia Bulletin, 37(S2), 4154.
Shamsi, S., Lau, A., Lencz, T., Burdick, K.E., DeRosse, P., Brenner, R., Malhotra, A.K. (2011). Cognitive and symptomatic predictors of functional disability in schizophrenia. Schizophrenia Research, 126(1–3), 257264.
Silverstein, S.M., All, S.D., & Jaeger, J. (2011). Cognition-UPSA score relationships: A further analysis of Silverstein et al. (2010) data and some caveats. Psychiatry Research, 187(3), 424431.
Velligan, D.I., Mahurin, R.K., Diamond, P.L., Hazelton, B.C., Eckert, S.L., & Miller, A.L. (1997). The functional significance of symptomatology and cognitive function in schizophrenia. Schizophrenia Research, 25, 2131.
Weickert, T.W., Goldberg, T.E., Gold, J.M., Bigelow, L.B., Egan, M.F., & Weinberger, D.R. (2000). Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Archives of General Psychiatry, 57, 907913.
Wilkinson, G.S., & Robertson, G. (2006). WRAT-4: The Wide Range Achievement test administration manual (4th ed.). Wilmington, DE: Wide Range.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed