Skip to main content Accessibility help

Cognitive and Behavioral Functioning in Childhood Acquired Demyelinating Syndromes

  • Christine Till (a1) (a2), Austin Noguera (a1), Leonard H. Verhey (a1), Julia O’Mahony (a1) (a3), E. Ann Yeh (a1) (a4), Jean K. Mah (a5), Katia J. Sinopoli (a1), Brian L. Brooks (a6), Berengere Aubert-Broche (a7), D. Louis Collins (a7), Sridar Narayanan (a7), Douglas L. Arnold (a7) and Brenda L. Banwell (a1) (a8)...


Objectives: The aim of this study was to describe cognitive, academic, and psychosocial outcomes after an incident demyelinating event (acquired demyelinating syndromes, ADS) in childhood and to investigate the contribution of brain lesions and confirmed MS diagnosis on outcome. Methods: Thirty-six patients with ADS (mean age=12.2 years, SD=2.7, range: 7–16 years) underwent brain MRI scans at presentation and at 6-months follow-up. T2-weighted lesions on MRI were assessed using a binary classification. At 6-months follow-up, patients underwent neuropsychological evaluation and were compared with 42 healthy controls. Results: Cognitive, academic, and behavioral outcomes did not differ between the patients with ADS and controls. Three of 36 patients (8.3%) were identified with cognitive impairment, as determined by performance falling ≤1.5 SD below normative values on more than four independent tests in the battery. Poor performance on a visuomotor integration task was most common, observed among 6/32 patients, but this did not differ significantly from controls. Twelve of 36 patients received a diagnosis of MS within 3 years post-ADS. Patients with MS did not differ from children with monophasic ADS in terms of cognitive performance at the 6-months follow-up. Fatigue symptoms were reported in 50% of patients, irrespective of MS diagnosis. Presence of brain lesions at onset and 6 months post-incident demyelinating event did not associate with cognitive outcome. Conclusions: Children with ADS experience a favorable short-term neurocognitive outcome, even those confirmed to have MS. Longitudinal evaluations of children with monophasic ADS and MS are required to determine the possibility of late-emerging sequelae and their time course. (JINS, 2016, 22, 1050–1060)


Corresponding author

Correspondence and reprint requests to: Christine Till, Department of Psychology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3. E-mail:


Hide All
Amato, M.P., Goretti, B., Ghezzi, A., Lori, S., Zipoli, V., Moiola, L., & Trojano, M. (2010). Cognitive and psychosocial features in childhood and juvenile MS: Two-year follow-up. Neurology, 75(13), 11341140.
Amato, M.P., Goretti, B., Ghezzi, A., Lori, S., Zipoli, V., & Portaccio, E., . . . Multiple Sclereosis Study Group of the Italian Neurological Society. (2008). Cognitive and psychosocial features of childhood and juvenile MS. Neurology, 70(20), 18911897.
Amato, M.P., Goretti, B., Ghezzi, A., Niccolai, C., Lori, S., Moiola, L., & Trojano, M. (2014). Neuropsychological features in childhood and juvenile multiple sclerosis. Neurology, 83(16), 14321438.
Aubert-Broche, B., Fonov, V., Ghassemi, R., Narayanan, S., Arnold, D.L., Banwell, B., & Collins, D.L. (2011). Regional brain atrophy in children with multiple sclerosis. Neuroimage, 58(2), 409415.
Banwell, B., Bar-Or, A., Arnold, D.L., Sadovnick, D., Narayanan, S., McGowan, M., & Marrie, R.A. (2011). Clinical, environmental, and genetic determinants of multiple sclerosis in children with acute demyelination: A prospective national cohort study. Lancet Neurology, 10(5), 436445.
Banwell, B., Kennedy, J., Sadovnick, D., Arnold, D.L., Magalhaes, S., Wambera, K., & Bar-Or, A. (2009). Incidence of acquired demyelination of the CNS in Canadian children. Neurology, 72(3), 232239.
Banwell, B.L., & Anderson, P.E. (2005). The cognitive burden of multiple sclerosis in children. Neurology, 64(5), 891894. Retrieved from
Barratt, W. (2006). The Barratt Simplified Measure of Social Status. Available at:
Beery, K. (1997). The Beery-Buktenica developmental test of visual-motor integration (4th ed.). Parsippany: Modern Curriculum Press.
Brooks, B.L., Sherman, E.M.S., & Iverson, G.L. (2010). Healthy children get low scores too: Prevalence of low scores on the nepsy-ii in preschoolers, children, and adolescents. Archives of Clinical Neuropsychology, 25(3), 182190.
Buchanan, R.J., Chakravorty, B.J., Tyry, T., Hatcher, W., & Vollmer, T. (2009). Age-related comparisons of people with multiple sclerosis: Demographic, disease, and treatment characteristics. Neurorehabilitation, 25(4), 271278. [pii]/r10.3233/NRE-2009-0525
Charvet, L.E., O’Donnell, E.H., Belman, A.L., Chitnis, T., Ness, J.M., Parrish, J., & Krupp, L.B. (2014). Longitudinal evaluation of cognitive functioning in pediatric multiple sclerosis: Report from the US Pediatric Multiple Sclerosis Network. Multiple Sclerosis, 20(11), 15021510.
Cohen, J.A., Reingold, S.C., Polman, C.H., & Wolinsky, J.S. (2012). Disability outcome measures in multiple sclerosis clinical trials: Current status and future prospects. The Lancet Neurology, 11(5), 467476.
Dale, R.C., Brilot, F., & Banwell, B. (2009). Pediatric central nervous system inflammatory demyelination: acute disseminated encephalomyelitis, clinically isolated syndromes, neuromyelitis optica, and multiple sclerosis. Current Opinion in Neurology, 22(3), 233240.
Deery, B., Anderson, V., Jacobs, R., Neale, J., & Kornberg, A. (2010). Childhood MS and ADEM: Investigation and comparison of neurocognitive features in children. Developmental Neuropsychology, 35(5), 506521.
Delis, D.C., Kaplan, E., & Kramer, J.H. (2001). Delis–Kaplan Executive Function SystemTM (D–KEFS). San Antonio: Pearson.
Eskildsen, S.F., Coupé, P., Fonov, V., Manjón, J.V., Leung, K.K., Guizard, N., & Collins, D.L. (2012). BEaST: Brain extraction based on nonlocal segmentation technique. Neuroimage, 59(3), 23622373.
Evans, A., & Brain Development Cooperative Group. (2006). The NIH MRI study of normal brain development. Neuroimage, 30, 184202.
Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L., & Brain Development Cooperative Group. (2011). Unbiased average age-appropriate atlases for pediatric studies. Neuroimage, 54(1), 313327.
Ghassemi, R., Antel, S.B., Narayanan, S., Francis, S.J., Bar-Or, A., & Sadovnick, A.D., . . . Canadian Pediatric Demyelinating Disease Study Group. (2008). Lesion distribution in children with clinically isolated syndromes. Annals of Neurology, 63(3), 401405.
Hahn, C.D., Miles, B.S., MacGregor, D.L., Blaser, S.I., Banwell, B.L., & Hetherington, C.R. (2003). Neurocognitive outcome after acute disseminated encephalomyelitis. Pediatric Neurology, 29(2), 117123. Retrieved from
Harder, L.L., Holland, A.A., Frohman, E., Graves, D., & Greenberg, B.M. (2013). Cognitive functioning in pediatric transverse myelitis. Multiple Sclerosis, 19(7), 947952.; 10.1177/1352458512466606
Hosseini, B., Flora, D.B., Banwell, B.L., & Till, C. (2014). Age of onset as a moderator of cognitive decline in pediatric-onset multiple sclerosis. Journal of the International Neuropsychological Society, 20, 796804.
Ingraham, L.G., & Aiken, C.B. (1996). Empirical approach to determining criteria for abnormality in test batteries with multiple measures. Neuropsychology, 10(1), 120124.
Jacobs, R.K., Anderson, V.A., Neale, J.L., Shield, L.K., & Kornberg, A.J. (2004). Neuropsychological outcome after acute disseminated encephalomyelitis: Impact of age at illness onset. Pediatric Neurology, 31(3), 191197. Retrieved from
Jayakrishnan, M.P., & Krishnakumar, P. (2010). Clinical profile of acute disseminated encephalomyelitis in children. Journal of Pediatric Neurosciences, 5(2), 111114.; 10.4103/1817-1745.76098
Julian, L., Serafin, D., Charvet, L., Ackerson, J., Benedict, R., & Braaten, E., . . . Network of Pediatric MS Centers of Excellence. (2012). Cognitive impairment occurs in children and adolescents with multiple sclerosis: Results from a United States network. Journal of Child Neurology, 28(1), 102107.; 10.1177/0883073812464816
Kerbrat, A., Aubert-Broche, B., Fonov, V., Narayanan, S., Sled, J.G., Arnold, D.A., & Collins, D.L. (2012). Reduced head and brain size for age and disproportionately smaller thalami in child-onset MS. Neurology, 78(3), 194201.
Krupp, L.B., Tardieu, M., Amato, M.P., Banwell, B., Chitnis, T., Dale, R.C., & Wassmer, E. (2013). International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Multiple Sclerosis, 19(10), 12611267.
Kuni, B.J., Banwell, B.L., & Till, C. (2012). Cognitive and behavioral outcomes in individuals with a history of acute disseminated encephalomyelitis (ADEM). Developmental Neuropsychology, 37(8), 682696.
Kurtzke, J. (1983). Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology, 33(11), 14441452.
MacAllister, W.S., Belman, A.L., Milazzo, M., Weisbrot, D.M., Christodoulou, C., Scherl, W.F., & Krupp, L.B. (2005). Cognitive functioning in children and adolescents with multiple sclerosis. Neurology, 64(8), 14221425. Retrieved from
MacAllister, W.S., Christodoulou, C., Milazzo, M., & Krupp, L.B. (2007). Longitudinal neuropsychological assessment in pediatric multiple sclerosis. Developmental Neuropsychology, 32(2), 625644.
Marin, S.E., Banwell, B.B., & Till, C. (2013). Cognitive trajectories in 4 patients with pediatric-onset multiple sclerosis: Serial evaluation over a decade. Journal of Child Neurology, 28(12), 15771586. Retrieved from
O’Mahony, J., Marrie, R.A., Laporte, A., Yeh, E.A., Bar-Or, A., Phan, C., & Banwell, B. (2015). Recovery from central nervous system acute demyelination in children. Pediatrics.
Polman, C.H., Reingold, S.C., Banwell, B., Clanet, M., Cohen, J.A., Filippi, M., & Wolinsky, J.S. (2011). Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Annals of Neurology, 69(2), 292302.
Reynolds, C.R., & Kamphaus, R.W. (2004). Behavior Assessment System for Children (BASC-2) (2nd ed.). Bloomington: Pearson Assessments.
Reynolds, C.R., & Voress, J.K. (2007). Test of Memory and Learning (TOMAL-2) (2nd ed.). Austin: Pro-Ed.
Smerbeck, A.M., Parrish, J., Serafin, D., Yeh, E.A., Weinstock-Guttman, B., Hoogs, M., & Benedict, R.H. (2011). Visual-cognitive processing deficits in pediatric multiple sclerosis. Multiple Sclerosis, 17(4), 449456.
Smith, A. (1982). The Symbol Digit Modalities Test (SDMT) Manual. Los Angeles: Western Publication Services.
Squillace, M., Ray, S., & Milazzo, M. (2015). Changes in gross grasp strength and fine motor skills in adolescents with pediatric multiple sclerosis. Occupational Therapy in Health Care, 29(1), 7785.
Suppiej, A., Cainelli, E., Casara, G., Cappellari, A., Nosadini, M., & Sartori, S. (2014). Long-term neurocognitive outcome and quality of life in pediatric acute disseminated encephalomyelitis. Pediatric Neurology, 50(4), 363367.; 10.1016/j.pediatrneurol.2013.12.006
Tenembaum, S., Chamoles, N., & Fejerman, N. (2002). Acute disseminated encephalomyelitis: A long-term follow-up study of 84 pediatric patients. Neurology, 59(8), 12241231.
Till, C., Ghassemi, R., Aubert-Broche, B., Kerbrat, A., Collins, D.L., Narayanan, S., & Banwell, B.L. (2011). MRI correlates of cognitive impairment in childhood onset multiple sclerosis. Neuropsychology, 25(3), 319332.
Till, C., Racine, N., Araujo, D., Narayanan, S., Collins, D.L., Aubert-Broche, B., & Banwell, B. (2013). Changes in cognitive performance over a 1-year period in children and adolescents with multiple sclerosis. Neuropsychology, 27(2), 210219.
Varni, J.W., Beaujean, A.A., & Limbers, C.A. (2013). Factorial invariance of pediatric patient self-reported fatigue across age and gender: a multigroup confirmatory factor analysis approach utilizing the PedsQL Multidimensional Fatigue Scale. Quality of Life Research, 22(9), 25812594.
Verhey, L.H., Branson, H.M., Laughlin, S., Shroff, M.M., Benseler, S.M., Feldman, B.M., & Banwell, B. (2013). Development of a standardized MRI scoring tool for CNS demyelination in children. AJNR American Journal of Neuroradiology, 34(6), 12711277.; 10.3174/ajnr.A3382
Verhey, L.H., Branson, H.M., Shroff, M.M., Callen, D.J., Sled, J.G., Narayanan, S., . . . Canadian Pediatric Demyelinating Disease Network. (2011). MRI parameters for prediction of multiple sclerosis diagnosis in children with acute CNS demyelination: A prospective national cohort study. Lancet Neurology, 10(12), 10651073.; 10.1016/S1474-4422(11)70250-2
Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio: The Psychological Corporation.
Wingerchuk, D.M., Banwell, B., Bennett, J.L., Cabre, P., Carroll, W., Chitnis, T., & Weinshenker, B.G. (2015). International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology, 85(2), 177189.
Woodcock, R.W., McGrew, K.S., & Mather, N. (2001). Woodcock Johnson III NU Tests of Cognitive Abilities. Rolling Meadows: Riverside Publishing.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Till supplementary material
Figure S1

 Word (29 KB)
29 KB

Cognitive and Behavioral Functioning in Childhood Acquired Demyelinating Syndromes

  • Christine Till (a1) (a2), Austin Noguera (a1), Leonard H. Verhey (a1), Julia O’Mahony (a1) (a3), E. Ann Yeh (a1) (a4), Jean K. Mah (a5), Katia J. Sinopoli (a1), Brian L. Brooks (a6), Berengere Aubert-Broche (a7), D. Louis Collins (a7), Sridar Narayanan (a7), Douglas L. Arnold (a7) and Brenda L. Banwell (a1) (a8)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.