Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T04:09:10.729Z Has data issue: false hasContentIssue false

What Do Language Disorders Reveal about Brain–Language Relationships? From Classic Models to Network Approaches

Published online by Cambridge University Press:  04 December 2017

Nina F. Dronkers*
Affiliation:
VA Northern California Health Care System, Martinez, California University of California, Davis, California National Research University Higher School of Economics, Moscow, Russia
Maria V. Ivanova
Affiliation:
VA Northern California Health Care System, Martinez, California National Research University Higher School of Economics, Moscow, Russia
Juliana V. Baldo
Affiliation:
VA Northern California Health Care System, Martinez, California
*
Correspondence and reprint requests to: Nina F. Dronkers, Center for Aphasia and Related Disorders, VA Northern California Health Care System, 150 Muir Road (126R), Martinez, CA 94553. E-mail: dronkers@ucdavis.edu

Abstract

Studies of language disorders have shaped our understanding of brain–language relationships over the last two centuries. This article provides a review of this research and how our thinking has changed over the years regarding how the brain processes language. In the 19th century, a series of famous case studies linked distinct speech and language functions to specific portions of the left hemisphere of the brain, regions that later came to be known as Broca’s and Wernicke’s areas. One hundred years later, the emergence of new brain imaging tools allowed for the visualization of brain injuries in vivo that ushered in a new era of brain-behavior research and greatly expanded our understanding of the neural processes of language. Toward the end of the 20th century, sophisticated neuroimaging approaches allowed for the visualization of both structural and functional brain activity associated with language processing in both healthy individuals and in those with language disturbance. More recently, language is thought to be mediated by a much broader expanse of neural networks that covers a large number of cortical and subcortical regions and their interconnecting fiber pathways. Injury to both grey and white matter has been seen to affect the complexities of language in unique ways that have altered how we think about brain–language relationships. The findings that support this paradigm shift are described here along with the methodologies that helped to discover them, with some final thoughts on future directions, techniques, and treatment interventions for those with communication impairments. (JINS, 2017, 23, 741–754)

Type
Section 1 – Brain Systems and Assessment
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., & Andersen, R. (2015). Decoding motor imagery from the posterior parietal cortex of a tetraplecig human. Science, 348(6237), 906910. https://doi.org/10.7910/DVN/GJDUTV Google Scholar
Alexander, A.L., Lee, J.E., Lazar, M., & Field, A.S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3), 316329.Google Scholar
Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M., & Evans, A. (2013). BigBrain: An ultrahigh-resolution 3D human brain model. Science, 21, 14721475.CrossRefGoogle Scholar
Arévalo, A., Perani, D., Cappa, S., Butler, A., Bates, E., & Dronkers, N. (2007). Action and object processing in aphasia: From nouns and verbs to the effect of manipulability [corrected] [published erratum appears in Brain Lang 2007;102:284]. Brain & Language, 100(1), 7994.Google Scholar
Ashburner, J., & Friston, K.J. (2000). Voxel-based morphometry—The methods. NeuroImage, 11(6), 805821. https://doi.org/10.1006/nimg.2000.0582 Google Scholar
Bajada, C.J., Lambon Ralph, M.A., & Cloutman, L.L. (2015). Transport for Language South of the Sylvian Fissure: The routes and history of the main tracts and stations in the ventral language network. Cortex, 69, 141151. https://doi.org/10.1016/j.cortex.2015.05.011 CrossRefGoogle ScholarPubMed
Baldo, J.V., Katseff, S., & Dronkers, N.F. (2012). Brain regions underlying repetition and auditory-verbal short-term memory deficits in aphasia: Evidence from voxel-based lesion symptom mapping. Aphasiology, 26, 338354. https://doi.org/10.1080/02687038.2011.602391 CrossRefGoogle ScholarPubMed
Baldo, J.V., Paulraj, S.R., Curran, B.C., & Dronkers, N.F. (2015). Impaired reasoning and problem-solving in individuals with language impairment due to aphasia or language delay. Frontiers in Psychology, 6, 114. https://doi.org/10.3389/fpsyg.2015.01523 Google Scholar
Baldo, J.V., Wilson, S.M., & Dronkers, N.F. (2012). Uncovering the neural substrates of language: A voxel-based lesion symptom mapping approach. Advances in the Neural Substrates of Language: Toward a Synthesis of Basic Science and Clinical Research, 118. https://doi.org/10.1002/9781118432501.ch28 Google Scholar
Bastiaanse, R., Edwards, S., Mass, E., & Rispens, J. (2003). Assessing comprehension and production of verbs and sentences: The Verb and Sentence Test (VAST). Aphasiology, 17(1), 4973. https://doi.org/10.1080/729254890 Google Scholar
Bates, E., Chen, S., Tzeng, O., Li, P., & Opie, M. (1991). The noun-verb problem in Chinese aphasia. Brain & Language, 41, 203233.Google Scholar
Bates, E., Wilson, S.M., Saygin, A.P., Dick, F., Sereno, M.I., Knight, R.T., & Dronkers, N.F. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6(5), 448450. https://doi.org/10.1038/nn1050 Google Scholar
Bates, E., Wulfeck, B., & MacWhinney, B. (1991). Cross-linguistic research in aphasia: An overview. Brain and Language, 41(2), 123148. https://doi.org/10.1016/0093-934X(91)90149-U Google Scholar
Binder, J.R., Frost, J.A., Hammeke, T.A., Cox, R.W., Rao, S.M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. The Journal of Neuroscience, 17(1), 353362.Google Scholar
Bogen, J.E., & Bogen, G.M. (1976). Wernicke’s region-Where is it? Annals of the New York Academy of Sciences, 280, 834843.Google Scholar
Bornkessel-Schlesewsky, I., Schlesewsky, M., Small, S.L., & Rauschecker, J.P. (2015). Neurobiological roots of language in primate audition: Common computational properties. Trends in Cognitive Sciences, 19(3), 142150. https://doi.org/10.1016/j.tics.2014.12.008 Google Scholar
Breier, J.I., Hasan, K.M., Zhang, W., Men, D., & Papanicolaou, A.C. (2008). Language dysfunction after stroke and damage to white matter tracts evaluated using diffusion tensor imaging. AJNR American Journal of Neuroradiology, 29(3), 483487. https://doi.org/10.3174/ajnr.A0846 Google Scholar
Broca, P. (1861a). Nouvelle observation d’aphémie produite par une lésion de la troisième circonvolution frontale. Bulletins de La Société D’anatomie (Paris), 2e Serie, 6, 398407.Google Scholar
Broca, P. (1861b). Perte de la parole: Ramollissement chronique et destruction partielle du lobe anterieur gauche du cerveau. Bulletins de La Societe D’anthropologie, 1re Serie, 2, 235238.Google Scholar
Broca, P. (1864). Sur les mots aphemie, aphasie et aphrasie; Lettre a M. le Professeur Trousseau. Gazette Des Hopitaux, 23(janvier).Google Scholar
Broca, P. (1865). Sur le siege de la faculte du langage articule. Bulletin de La Societe d’Anthropologie, 6, 337393.Google Scholar
Caramazza, A., & Hillis, A.E. (1991). Lexical organization of nouns and verbs in the brain. Nature, 349(6312), 788790. https://doi.org/10.1038/349788a0 Google Scholar
Catani, M., Howard, R.J., Pajevic, S., & Jones, D.K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage, 17(1), 7794. https://doi.org/10.1006/nimg.2002.1136 Google Scholar
Catani, M., & Mesulam, M.M. (2008). The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state. Cortex, 44(8), 953961. https://doi.org/10.1016/j.cortex.2008.04.002.The CrossRefGoogle ScholarPubMed
Chang, E.F., Raygor, K.P., & Berger, M.S. (2015). Contemporary model of language organization: An overview for neurosurgeons. Journal of Neurosurgery, 122, 250261. https://doi.org/10.3171/2014.10.JNS132647 CrossRefGoogle ScholarPubMed
Cho-Reyes, S., & Thompson, C.K. (2012). Verb and sentence production and comprehension in aphasia: Northwestern Assessment of Verbs and Sentences (NAVS). Aphasiology, 26(10), 12501277. https://doi.org/10.1080/02687038.2012.693584 CrossRefGoogle ScholarPubMed
Code, C. (2001). Multifactorial processes in recovery from aphasia: Developing the foundations for a multileveled framework. Brain and Language, 77(1), 2544. https://doi.org/10.1006/brln.2000.2420 Google Scholar
Cordes, D., Haughton, V.M., Arfanakis, K., Wendt, G.J., Turski, P.A., Moritz, C.H., & Meyerand, M.E. (2000). Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR American Journal of Neuroradiology, 21(9), 16361644.Google Scholar
Crinion, J.T., & Leff, A.P. (2007). Recovery and treatment of aphasia after stroke: Functional imaging studies. Current Opinion in Neurology, 20(6), 667673. https://doi.org/10.1097/WCO.0b013e3282f1c6fa Google Scholar
Damasio, H., Tranel, D., Grabowski, T., Adolphs, R., & Damasio, A. (2004). Neural systems behind word and concept retrieval. Cognition, 92(1–2), 179229. https://doi.org/10.1016/j.cognition.2002.07.001 CrossRefGoogle ScholarPubMed
Dehaene, S. (2009). Reading in the brain: The new science of how we read. New York, NY: Penguin Books.Google Scholar
Dell’Acqua, F., Simmons, A., Williams, S.C.R., & Catani, M. (2013). Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion. Human Brain Mapping, 34(10), 24642483. https://doi.org/10.1002/hbm.22080 Google Scholar
Démonet, J.F., Puel, M., Celsis, P., & Cardebat, D. (1991). “Subcortical” aphasia: Some proposed pathophysiological mechanisms and their rCBF correlates revealed by SPECT. Journal of Neurolinguistics, 6(3), 319344. https://doi.org/10.1016/0911-6044(91)90025-E Google Scholar
Dick, A.S., Bernal, B., & Tremblay, P. (2014). The language connectome: New pathways, new concepts. The Neuroscientist, 20(5), 453467. https://doi.org/10.1177/1073858413513502 Google Scholar
Dick, F., Bates, E., Wulfeck, B., Utman, J., Dronkers, N.F., & Gernsbacher, M. (2001). Language deficits, localization and grammar: Evidence for a distributive model of language breakdown in aphasics and normals. Psychological Review, 108(4), 759788.Google Scholar
Dronkers, N.F. (1996). A new brain region for coordinating speech articulation. Nature, 384, 159161.CrossRefGoogle ScholarPubMed
Dronkers, N.F., & Baldo, J.V. (2010). Language: Aphasia. In Encyclopedia of Neuroscience (pp. 343348). https://doi.org/10.1016/B978-008045046-9.01876-3 Google Scholar
Dronkers, N.F., & Ludy, C.A. (1998). Brain lesion analysis in clinical research. In B. Stemmer & H.A. Whitaker (Eds.), Handbook of neurolinguistics (pp. 173187). San Diego, CA: Academic Press.Google Scholar
Dronkers, N.F., Plaisant, O., Iba-Zizen, M.T., & Cabanis, E.A. (2007). Paul Broca’s historic cases: High resolution MR imaging of the brains of Leborgne and Lelong. Brain, 130(Pt 5), 14321441. https://doi.org/10.1093/brain/awm042 Google Scholar
Dronkers, N.F., Redfern, B.B., & Knight, R.T. (2000). The neural architecture of language disorders. In M.S. Gazzaniga (Ed.), The new cognitive neurosciences (pp. 949958). Cambridge: The MIT Press.Google Scholar
Dronkers, N.F., Redfern, B.B., & Ludy, C.A. (1995). Lesion localization in chronic Wernicke’s aphasia. Brain and Language, 51(1), 6265.Google Scholar
Dronkers, N.F., Wilkins, D.P., Van Valin, R.D., Redfern, B.B., & Jaeger, J.J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92(1–2), 145177. https://doi.org/10.1016/j.cognition.2003.11.002.Google Scholar
Duffau, H. (2014). The huge plastic potential of adult brain and the role of connectomics: New insights provided by serial mappings in glioma surgery. Cortex, 58, 325337. https://doi.org/10.1016/j.cortex.2013.08.005 Google Scholar
Flinker, A., Korzeniewska, A., Shestyuk, A.Y., Franaszczuk, P.J., Dronkers, N.F., Knight, R.T., & Crone, N.E. (2015). Redefining the role of Broca’s area in speech. Proceedings of the National Academy of Sciences of the United States of America, 112(9), 28712875. https://doi.org/10.1073/pnas.1414491112 Google Scholar
Freud, S. (1891). On aphasia (E. (Translation) Stengel Ed.). New York: International University Press.Google Scholar
Fridriksson, J., Richardson, J.D., Fillmore, P., & Cai, B. (2012). Left hemisphere plasticity and aphasia recovery. NeuroImage, 60(2), 854863. https://doi.org/10.1016/j.neuroimage.2011.12.057 Google Scholar
Friederici, A.D., & Singer, W. (2015). Grounding language processing on basic neurophysiological principles. Trends in Cognitive Sciences, 19, 329338. https://doi.org/10.1016/j.tics.2015.03.012 Google Scholar
Gainotti, G., Silveri, M.C., Daniel, A., & Giustolisi, L. (1995). Neuroanatomical correlates of category-specific semantic disorders: A critical survey. Memory, 3(3–4), 247263. https://doi.org/10.1080/09658219508253153 Google Scholar
Geranmayeh, F., Brownsett, S.L.E., & Wise, R.J.S. (2014). Task-induced brain activity in aphasic stroke patients: What is driving recovery? Brain, 137(Pt 10), 26322648. https://doi.org/10.1093/brain/awu163 Google Scholar
Geschwind, N. (1965). Disconnexion syndromes in animals and man. I. Brain, 88, 237294.Google Scholar
Goldstein, K. (1948). Language and language disturbances: Aphasic symptom complexes and their significance for medicine and theory of language. New York: Grune & Stratton.Google Scholar
Goodglass, H., & Kaplan, E. (1972). The assessment of aphasia and related disorders. Philadelphia: Lea & Febiger.Google Scholar
Gorno-Tempini, M.L., Dronkers, N.F., Rankin, K.P., Ogar, J.M., Phengrasamy, L., Rosen, H.J., & Miller, B.L. (2004). Cognition and anatomy in three variants of primary progressive aphasia. Annals of Neurology, 55(3), 335346. https://doi.org/10.1002/ana.10825 Google Scholar
Grossman, M., Powers, J., Ash, S., McMillan, C., Burkholder, L., Irwin, D., & Trojanowski, J.Q. (2013). Disruption of large-scale neural networks in non-fluent/agrammatic variant primary progressive aphasia associated with frontotemporal degeneration pathology. Brain and Language, 127(2), 106120. https://doi.org/10.1016/j.bandl.2012.10.005 Google Scholar
Hagoort, P., & Indefrey, P. (2014). The neurobiology of language beyond single words. Annual Review of Neuroscience, 37, 347362. https://doi.org/10.1146/annurev-neuro-071013-013847 Google Scholar
Hamilton, R.H., Chrysikou, E.G., & Coslett, B. (2011). Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain and Language, 118(1–2), 4050. https://doi.org/10.1016/j.bandl.2011.02.005 Google Scholar
Head, H. (1926). No Title. In Aphasia and kindred disorders of speech. New York: Macmillan.Google Scholar
Heiss, W.-D., Kessler, J., Thiel, A., Ghaemi, M., & Karbe, H. (1999). Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Annals of Neurology, 45(4), 430438. https://doi.org/10.1002/1531-8249(199904)45:4<430::AID-ANA3>3.0.CO;2-P Google Scholar
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews. Neuroscience, 8(5), 393402. https://doi.org/10.1038/nrn2113 CrossRefGoogle ScholarPubMed
Hodges, J.R., Patterson, K., Oxbury, S., & Funnell, E. (1992). Semantic dementia. Brain, 115, 17831806. https://doi.org/10.1093/brain/115.6.1783 Google Scholar
Howard, D., Swinburn, K., & Porter, G. (2010). Putting the CAT out: What the comprehensive aphasia test has to offer. Aphasiology, 24(1), 5674. https://doi.org/10.1080/02687030802453202 CrossRefGoogle Scholar
Inoue, K., Madhyastha, T., Rudrauf, D., Mehta, S., & Grabowski, T. (2014). What affects detectability of lesion-deficit relationships in lesion studies? NeuroImage: Clinical, 6, 388397. https://doi.org/10.1016/j.nicl.2014.10.002 Google Scholar
Ivanova, M.V., Isaev, D.Y., Dragoy, O.V., Akinina, Y.S., Petrushevskiy, A.G., Fedina, O.N., & Dronkers, N.F. (2016). Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia. Cortex, 85, 165181. https://doi.org/10.1016/j.cortex.2016.04.019.Google Scholar
Ivanova, M.V., Dragoy, O.V., Kuptsova, S.V., Ulicheva, A.S., & Laurinavichyute, A.K. (2015). The contribution of working memory to language comprehension: Differential effect of aphasia type. Aphasiology, 29, 645664. https://doi.org/10.1080/02687038.2014.975182 Google Scholar
Jackson, J.H. (1878). On affectations of speech from diseases of the brain. I. Brain, 1, 304330.Google Scholar
Jackson, J.H. (1879). On affectations of speech from diseases of the brain. II. Brain, 2, 323356.Google Scholar
Jarso, S., Li, M., Faria, A., Davis, C., Leigh, R., Sebastian, R., & Hillis, A.E. (2013). Distinct mechanisms and timing of language recovery after stroke. Cognitive Neuropsychology, 30(7–8), 454475. https://doi.org/10.1080/02643294.2013.875467 Google Scholar
Kalladka, D., Sinden, J., Pollock, K., Haig, C., McLean, J., Smith, W., & Muir, K.W. (2016). Human neural stem cells in patients with chronic ischaemic stroke (PISCES): A phase 1, first-in-man study. The Lancet, 388(10046), 787796. https://doi.org/10.1016/S0140-6736(16)30513-X Google Scholar
Kaplan, E., Goodglass, H., & Weintraub, S. (1983). Boston Naming Test. Philadelphia: Lea and Febiger.Google Scholar
Kay, J., Lesser, R. & Coltheart, M. (1992). Psycholinguistic assessments of language processing in aphasia (PALPA). Lawrence Erlbaum.Google Scholar
Kay, J., Lesser, R., & Coltheart, M. (1996). Psycholinguistic assessments of language processing in aphasia (PALPA): An introduction. Aphasiology, 10(2), 159180. https://doi.org/10.1080/02687039608248403 Google Scholar
Kertesz, A. (1982). Western aphasia battery. New York: Grune and Stratton.Google Scholar
Kertesz, A., Harlock, W., & Coates, R. (1979). Computer tomographic localization, lesion size, and prognosis in aphasia and nonverbal impairment. Brain and Language, 8, 3450.Google Scholar
Kümmerer, D., Hartwigsen, G., Kellmeyer, P., Glauche, V., Mader, I., Klöppel, S., & Saur, D. (2013). Damage to ventral and dorsal language pathways in acute aphasia. Brain, 136(Pt 2), 619629. https://doi.org/10.1093/brain/aws354 Google Scholar
Kutas, M., & Hillyard, S.A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 11, 203205. https://doi.org/10.1126/science.7350657 Google Scholar
Lambon Ralph, M.A., Ehsan, S., Baker, G.A., & Rogers, T.T. (2012). Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy. Brain, 135(Pt 1), 242258. https://doi.org/10.1093/brain/awr325 Google Scholar
Lashley, K. (1950). In search of the engram. Society of Experimental Biology Symposium, 4, 454482.Google Scholar
Lichtheim, L. (1885). On aphasia. Brain, 7, 433484.Google Scholar
Lorch, M. (2013). Written language production disorders: Historical and recent perspectives. Current Neurology and Neuroscience Reports, 13, 369. https://doi.org/10.1007/s11910-013-0369-9 Google Scholar
Luria, A.R. (1947). Traumatic aphasia. The Hague: Reprinted in translation, Mouton, 1970.Google Scholar
Luria, A.R. (1966). Higher cortical functions in man. New York: Basic Books.Google Scholar
MacKay, D.G., Stewart, R., & Burke, D.M. (1998). H.M. Revisited: Relations between language comprehension, memory, and the hippocampal system. Journal of Cognitive Neuroscience, 10(3), 377394. https://doi.org/10.1162/089892998562807 Google Scholar
Mah, Y.H., Husain, M., Rees, G., & Nachev, P. (2014). Human brain lesion-deficit inference remapped. Brain, 137(9), 25222531. https://doi.org/10.1093/brain/awu164 Google Scholar
Marangolo, P., Fiori, V., Calpagnano, M.A., Campana, S., Razzano, C., Caltagirone, C., & Marini, A. (2013). tDCS over the left inferior frontal cortex improves speech production in aphasia. Frontiers in Human Neuroscience, 7, 539. https://doi.org/10.3389/fnhum.2013.00539 Google Scholar
Mariën, P., Ackermann, H., Adamaszek, M., Barwood, C.H.S., Beaton, A., Desmond, J., & Ziegler, W. (2014). Consensus paper: Language and the cerebellum: An ongoing enigma. Cerebellum, 13(3), 386410. https://doi.org/10.1007/s12311-013-0540-5 Google Scholar
Mechelli, A., Price, C.J., Friston, K.J., & Ashburner, J. (2005). Voxel-based morphometry applications of the human brain: Methods and applications. Current Medical Imaging Reviews, 1, 19. https://doi.org/10.2174/1573405054038726 Google Scholar
Mesgarani, N., Cheung, C., Johnson, K., & Chang, E.F. (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 343(6174), 10061010. https://doi.org/10.1126/science.1245994 Google Scholar
Mesulam, M.-M. (2001). Primary progressive aphasia. Annals of Neurology, 49(4), 425432. https://doi.org/10.1002/ana.91 Google Scholar
Metter, E.J., Jackson, C., Kempler, D., Riege, W.H., Hanson, W.R., Mazziotta, J.C., & Phelps, M.E. (1986). Left hemisphere intracerebral hemorrhages studied by (F-18)- fluorodeoxyglucose PET. Neurology, 36(9), 11551162.Google Scholar
Mirman, D., Chen, Q., Zhang, Y., Wang, Z., Faseyitan, O.K., Coslett, H.B., & Schwartz, M.F. (2015). Neural organization of spoken language revealed by lesion–symptom mapping. Nature Communications, 6, 6762. https://doi.org/10.1038/ncomms7762 Google Scholar
Mohr, J.P. (1976). Broca’s area and Broca’s aphasia. In H. Whitaker (Ed.), Studies in neurolinguistics, Volume 1, (pp. 201233). New York: Academic Press.Google Scholar
Muller, A.M., & Meyer, M. (2014). Language in the brain at rest: New insights from resting state data and graph theoretical analysis. Frontiers in Human Neuroscience, 8, 228. https://doi.org/10.3389/fnhum.2014.00228 Google Scholar
Mummery, C.J., Shallice, T., & Price, C.J. (1999). Dual-process model in semantic priming: A functional imaging perspective. NeuroImage, 9, 516525.Google Scholar
Nadeau, S.E., & Crosson, B. (1997). Subcortical aphasia. Brain and Cognition, 58, 355402. https://doi.org/10.1006/brln.1997.1707 Google ScholarPubMed
Naeser, M.A., & Hayward, R.W. (1978). Naeser 1978 - Lesion localization in aphasia with cranial computed tomography and the Boston Diagnostic Aphasia Exam. Neurology, 28, 545551.CrossRefGoogle ScholarPubMed
Naeser, M.A., Martin, P.I., Nicholas, M., Baker, E.H., Seekins, H., Kobayashi, M., & Pascual-Leone, A. (2005). Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: An open-protocol study. Brain and Language, 93(1), 95105. https://doi.org/10.1016/j.bandl.2004.08.004 Google Scholar
Nair, V.A., Young, B.M., La, C., Reiter, P., Nadkarni, T.N., Song, J., & Prabhakaran, V. (2015). Functional connectivity changes in the language network during stroke recovery. Annals of Clinical and Translational Neurology, 2(2), 185195. https://doi.org/10.1002/acn3.165 Google Scholar
Ojemann, G., Ojemann, J., Lettich, E., & Berger, M. (1989). Cortical language localization in left, dominant hemisphere. Journal of Neurosurgery, 71(3), 316326. https://doi.org/10.3171/jns.1989.71.3.0316 Google Scholar
Paradis, M. (2004). A neurolinguistic theory of bilingualism. Amsterdam/Philadelphia: John Benjamins.Google Scholar
Penfield, W., & Roberts, L. (1959). Speech and brain mechanisms. Princeton, NJ: Princeton University Press.Google Scholar
Perani, D., Cappa, S.F., Tettamanti, M., Rosa, M., Scifo, P., Miozzo, A., & Fazio, F. (2003). A fMRI study of word retrieval in aphasia. Brain and Language, 85(3), 357368.Google Scholar
Piai, V., Anderson, K.L., Lin, J.J., Dewar, C., Parvizi, J., Dronkers, N.F., & Knight, R.T. (2016). Direct brain recordings reveal hippocampal rhythm underpinnings of language processing. Proceedings of the National Academy of Sciences of the United States of America, 4, 1136611371. https://doi.org/10.1073/pnas.1603312113 Google Scholar
Poizner, H., Klima, E., & Bellugi, U. (1990). What the hands reveal about the brain. Cambridge, MA: The MIT Press. Retrieved from https://mitpress.mit.edu/authors/howard-poizner Google Scholar
Porch, B.E. (1967). Porch index of communicative ability. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Price, C.J. (2000). The anatomy of language: Contributions from functional imaging. Journal of Anatomy, 197, 335359.Google Scholar
Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., & Shulman, G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676682. https://doi.org/10.1073/pnas.98.2.676 Google Scholar
Riès, S.K., Karzmark, C.R., Navarrete, E., Knight, R.T., & Dronkers, N.F. (2015). Specifying the role of the left prefrontal cortex in word selection. Brain and Language, 149, 135147. https://doi.org/10.1016/j.bandl.2015.07.007 Google Scholar
Rorden, C., & Karnath, H. (2004). Using human brain lesions to infer function: A relic from a past era in the fMRI age? Nature Reviews. Neuroscience, 5(10), 813819. https://doi.org/10.1038/nrn1521 Google Scholar
Rosen, H.J., Petersen, S.E., Linenweber, M.R., Snyder, A.Z., White, D.A., Chapman, L., & Corbetta, M.D. (2000). Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology, 55(12), 18831894.Google Scholar
Sanai, N., Mirzadeh, Z., & Berger, M.S. (2008). Functional outcome after language mapping for glioma resection. New England Journal of Medicine, 358(1), 1827. https://doi.org/10.1056/NEJMoa067819 Google Scholar
Saur, D., Kreher, W., Schnell, S., Ku, D., Vry, M., Umarova, R., & Rijntjes, M. (2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 1803518040. https://doi.org/http://doi.org/10.1073/pnas.0805234105 CrossRefGoogle ScholarPubMed
Saur, D., Lange, R., Baumgaertner, A., Schraknepper, V., Willmes, K., Rijntjes, M., & Weiller, C. (2006). Dynamics of language reorganization after stroke. Brain, 129(6), 13711384. https://doi.org/10.1093/brain/awl090 Google Scholar
Schlaug, G., Marchina, S., & Norton, A. (2009). Evidence for plasticity in white-matter tracts of patients with chronic Broca’s aphasia undergoing intense intonation-based speech therapy. Annals of the New York Academy of Sciences, 1169, 385394. https://doi.org/10.1111/j.1749-6632.2009.04587.x Google Scholar
Schlaug, G., Marchina, S., & Wan, C.Y. (2011). The use of non-invasive brain stimulation techniques to facilitate recovery from post-stroke aphasia. Neuropsychology Review, 21(3), 288301. https://doi.org/10.1007/s11065-011-9181-y Google Scholar
Schuell, H. (1965). Differential diagnosis of aphasia with the Minnesota Test. Minneapolis: University of Minnesota Press.Google Scholar
Schwartz, M.F., Faseyitan, O., Kim, J., & Coslett, H.B. (2012). The dorsal stream contribution to phonological retrieval in object naming. Brain, 135(12), 37993814. https://doi.org/10.1093/brain/aws300 Google Scholar
Semenza, C. (2009). The neuropsychology of proper names. Mind and Language, 24(4), 347369. https://doi.org/10.1111/j.1468-0017.2009.01366.x Google Scholar
Smith, S.M., Vidaurre, D., Beckmann, C.F., Glasser, M.F., Jenkinson, M., Miller, K.L., & Van Essen, D.C. (2013). Functional connectomics from resting-state fMRI. Trends in Cognitive Sciences, 17(12), 666682. https://doi.org/10.1016/j.tics.2013.09.016 Google Scholar
Snowden, J., Goulding, P., & Neary, D. (1989). Semantic dementia: A form of circumscribed cerebral atrophy. Behavioural Neurology, 2(3), 167182. https://doi.org/MCI-Converted #101; Thesis_references-Converted #324 Google Scholar
Steinberg, G.K., Kondziolka, D., Wechsler, L.R., Lunsford, L.D., Coburn, M.L., Billigen, J.B., & Schwartz, N.E. (2016). Clinical outcomes of transplanted modified bone marrow–derived mesenchymal stem cells in stroke. Stroke, 47(7), 18171824. https://doi.org/10.1161/STROKEAHA.116.012995 Google Scholar
Sung, J.E., McNeil, M.R., Pratt, S.R., Dickey, M.W., Hula, W.D., Szuminsky, N.J., & Doyle, P.J. (2009). Verbal working memory and its relationship to sentence-level reading and listening comprehension in persons with aphasia. Aphasiology, 23(7–8), 10401052. https://doi.org/10.1080/02687030802592884 Google Scholar
Thompson, C.K., & den Ouden, D.B. (2008). Neuroimaging and recovery of language in aphasia. Current Neurology and Neuroscience Reports, 8(6), 475483. https://doi.org/10.1007/s11910-008-0076-0 Google Scholar
Tomasi, D., & Volkow, N.D. (2012). Resting functional connectivity of language networks: Characterization and reproducibility. Molecular Psychiatry, 17(8), 841854. https://doi.org/10.1038/mp.2011.177 Google Scholar
Tournier, J., Mori, S., & Leemans, a. (2011). Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine, 65(6), 15321556. https://doi.org/10.1002/mrm.22924.Diffusion Google Scholar
Turken, A.U., & Dronkers, N.F. (2011). The neural architecture of the language comprehension network: Converging evidence from lesion and connectivity analyses. Frontiers in Systems Neuroscience, 5, 1. https://doi.org/10.3389/fnsys.2011.00001 Google Scholar
Tyler, L.K., Marslen-Wilson, W.D., Randall, B., Wright, P., Devereux, B.J., Zhuang, J., & Stamatakis, E.A. (2011). Left inferior frontal cortex and syntax: Function, structure and behaviour in patients with left hemisphere damage. Brain, 134(Pt 2), 415431. https://doi.org/10.1093/brain/awq369 Google Scholar
van Hees, S., Mcmahon, K., Angwin, A., de Zubicaray, G., Read, S., & Copland, D.A. (2014a). A functional MRI study of the relationship between naming treatment outcomes and resting state functional connectivity in post-stroke aphasia. Human Brain Mapping, 35(8), 39193931. https://doi.org/10.1002/hbm.22448 Google Scholar
van Hees, S., McMahon, K., Angwin, A., de Zubicaray, G., Read, S., & Copland, D.A. (2014b). Changes in white matter connectivity following therapy for anomia post stroke. Neurorehabilitation and Neural Repair, 28(4), 325334. https://doi.org/10.1177/1545968313508654 Google Scholar
Vigneau, M., Beaucousin, V., Hervé, P.-Y., Jobard, G., Petit, L., Crivello, F., & Tzourio-Mazoyer, N. (2011). What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? NeuroImage, 54(1), 577593. https://doi.org/10.1016/j.neuroimage.2010.07.036 Google Scholar
Warrington, E.K. (1975). The selective impairment of semantic memory. The Quarterly Journal of Experimental Psychology, 27, 635657. https://doi.org/10.1080/14640747508400525 Google Scholar
Warrington, E.K. & Shallice, T. (1984). Category specific semantic impairments. Brain, 107, 829854.Google Scholar
Weiller, C., Isensee, C., Rijntjes, M., Huber, W., Müller, S., Bier, D., & Diener, H.C. (1995). Recovery from wernicke’s aphasia: A positron emission tomographic study. Annals of Neurology, 37(6), 723732. https://doi.org/10.1002/ana.410370605 Google Scholar
Wernicke, C. (1874). Der aphasische Symptomencomplex. Breslau: Kohn and Weigert.Google Scholar
Wilson, S.M., Galantucci, S., Tartaglia, M.C., Rising, K., Patterson, D.K., Henry, M.L., & Gorno-Tempini, M.L. (2011). Syntactic processing depends on dorsal language tracts. Neuron, 72(2), 397403. https://doi.org/10.1016/j.neuron.2011.09.014 Google Scholar
Wilson, S.M., Lam, D., Babiak, M.C., Perry, D.W., Shih, T., Hess, C.P., & Chang, E.F. (2015). Transient aphasias after left hemisphere resective surgery. Journal of Neurosurgery, 862, 113. https://doi.org/10.3171/2015.4.JNS141962 Google Scholar
Yang, M., Li, J., Li, Y., Li, R., Pang, Y., Yao, D., & Chen, H. (2016). Altered intrinsic regional activity and interregional functional connectivity in post-stroke aphasia. Scientific Reports, 6, 24803. https://doi.org/10.1038/srep24803 Google Scholar
Zhu, D., Chang, J., Freeman, S., Tan, Z., Xiao, J., Gao, Y., & Kong, J. (2014). Changes of functional connectivity in the left frontoparietal network following aphasic stroke. Frontiers in Behavioral Neuroscience, 8, 167. https://doi.org/10.3389/fnbeh.2014.00167 Google Scholar
Zurif, E.B., Caramazza, A., & Meyerson, R. (1972). Grammatical judgements of agrammatic aphasics. Neuropsychologia, 10, 405417.Google Scholar