Skip to main content Accessibility help
×
Home

Neurocognitive Effects of HIV, Hepatitis C, and Substance Use History

Published online by Cambridge University Press:  02 December 2011

Kathryn N. Devlin
Affiliation:
Centers for Behavioral and Preventive Medicine, The Miriam Hospital, Providence, Rhode Island
Assawin Gongvatana
Affiliation:
Centers for Behavioral and Preventive Medicine, The Miriam Hospital, Providence, Rhode Island Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
Uraina S. Clark
Affiliation:
Centers for Behavioral and Preventive Medicine, The Miriam Hospital, Providence, Rhode Island Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
Jesse D. Chasman
Affiliation:
Centers for Behavioral and Preventive Medicine, The Miriam Hospital, Providence, Rhode Island Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
Michelle L. Westbrook
Affiliation:
Centers for Behavioral and Preventive Medicine, The Miriam Hospital, Providence, Rhode Island Center for AIDS Research, The Miriam Hospital, Providence, Rhode Island
Karen T. Tashima
Affiliation:
Center for AIDS Research, The Miriam Hospital, Providence, Rhode Island Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
Bradford Navia
Affiliation:
Tufts University School of Medicine, Boston, Massachusetts
Ronald A. Cohen
Affiliation:
Centers for Behavioral and Preventive Medicine, The Miriam Hospital, Providence, Rhode Island Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
Corresponding
E-mail address:

Abstract

HIV-associated neurocognitive dysfunction persists in the highly active antiretroviral therapy (HAART) era and may be exacerbated by comorbidities, including substance use and hepatitis C virus (HCV) infection. However, the neurocognitive impact of HIV, HCV, and substance use in the HAART era is still not well understood. In the current study, 115 HIV-infected and 72 HIV-seronegative individuals with significant rates of lifetime substance dependence and HCV infection received comprehensive neuropsychological assessment. We examined the effects of HIV serostatus, HCV infection, and substance use history on neurocognitive functioning. We also examined relationships between HIV disease measures (current and nadir CD4, HIV RNA, duration of infection) and cognitive functioning. Approximately half of HIV-infected participants exhibited neurocognitive impairment. Detectable HIV RNA but not HIV serostatus was significantly associated with cognitive functioning. HCV was among the factors most consistently associated with poorer neurocognitive performance across domains, while substance use was less strongly associated with cognitive performance. The results suggest that neurocognitive impairment continues to occur in HIV-infected individuals in association with poor virologic control and comorbid conditions, particularly HCV coinfection. (JINS, 2012, 18, 68–78)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

Ances, B.M., Vaida, F., Yeh, M.J., Liang, C.L., Buxton, R.B., Letendre, S., Ellis, R.J. (2010). HIV infection and aging independently affect brain function as measured by functional magnetic resonance imaging. Journal of Infectious Diseases, 201(3), 336340.CrossRefGoogle ScholarPubMed
Armstrong, G.L., Wasley, A., Simard, E.P., McQuillan, G.M., Kuhnert, W.L., Alter, M.J. (2006). The prevalence of hepatitis C virus infection in the United States, 1999 through 2002. Annals of Internal Medicine, 144(10), 705714.CrossRefGoogle ScholarPubMed
Bajaj, J.S., Wade, J.B., Sanyal, A.J. (2009). Spectrum of neurocognitive impairment in cirrhosis: Implications for the assessment of hepatic encephalopathy. Hepatology, 50(6), 20142021.CrossRefGoogle ScholarPubMed
Basso, M.R., Bornstein, R.A. (2000). Neurobehavioural consequences of substance abuse and HIV infection. Journal of Psychopharmacology, 14(3), 228237.CrossRefGoogle ScholarPubMed
Benedict, R.H.B. (1997). Brief Visuospatial Memory Test - Revised. Odessa, FL: Psychological Assessment Resources.Google Scholar
Benedict, R.H.B., Schretlen, A., Groninger, L., Brandt, J. (1998). Hopkins Verbal Learning Test Revised: Normative data and analysis of inter-form and test-retest reliability. The Clinical Neuropsychologist, 12, 4355.CrossRefGoogle Scholar
Benedict, R.H.B., Schretlen, D., Groninger, L., Dobraski, M., Shpritz, B. (1996). Revision of the Brief Visuospatial Memory Test: Studies of normal performance, reliability, and validity. Psychological Assessment, 8(2), 145153.CrossRefGoogle Scholar
Benton, A.L., Hamsher, K., Sivan, A.B. (1994). Multilingual Aphasia Examination. Iowa City: AJA Associates.Google Scholar
Bica, I., McGovern, B., Dhar, R., Stone, D., McGowan, K., Scheib, R., Snydman, D.R. (2001). Increasing mortality due to end-stage liver disease in patients with human immunodeficiency virus infection. Clinical Infectious Diseases, 32(3), 492497.CrossRefGoogle ScholarPubMed
Bornstein, R.A., Nasrallah, H.A., Para, M.F., Whitacre, C.C., Fass, R.J. (1994). Duration of illness and neuropsychological performance in asymptomatic HIV infection. Journal of Neuropsychiatry and Clinical Neurosciences, 6(2), 160164.Google ScholarPubMed
Brandt, J., Benedict, R.H.B. (1991). Hopkins Verbal Learning Test-Revised (HVLT-R). Lutz, FL: Psychological Assessment Resources, Inc.Google Scholar
Brew, B.J. (2004). Evidence for a change in AIDS dementia complex in the era of highly active antiretroviral therapy and the possibility of new forms of AIDS dementia complex. AIDS, 18(Suppl. 1), S75S78.CrossRefGoogle ScholarPubMed
Brew, B.J., Crowe, S.M., Landay, A., Cysique, L.A., Guillemin, G. (2009). Neurodegeneration and ageing in the HAART era. Journal of Neuroimmune Pharmacology, 4(2), 163174.CrossRefGoogle Scholar
Brown, T.T., Cole, S.R., Li, X., Kingsley, L.A., Palella, F.J., Riddler, S.A., Dobs, A.S. (2005). Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Archives of Internal Medicine, 165(10), 11791184.CrossRefGoogle Scholar
Carey, C.L., Woods, S.P., Gonzalez, R., Conover, E., Marcotte, T.D., Grant, I., Heaton, R.K. (2004). Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. Journal of Clinical and Experimental Neuropsychology, 26(3), 307319.CrossRefGoogle Scholar
Carrat, F., Bani-Sadr, F., Pol, S., Rosenthal, E., Lunel-Fabiani, F., Benzekri, A., Perronne, C. (2004). Pegylated interferon alfa-2b vs standard interferon alfa-2b, plus ribavirin, for chronic hepatitis C in HIV-infected patients: A randomized controlled trial. JAMA, 292(23), 28392848.CrossRefGoogle ScholarPubMed
Chang, L., Ernst, T., Witt, M.D., Ames, N., Gaiefsky, M., Miller, E. (2002). Relationships among brain metabolites, cognitive function, and viral loads in antiretroviral-naive HIV patients. Neuroimage, 17(3), 16381648.CrossRefGoogle ScholarPubMed
Chen, Y., An, H., Zhu, H., Stone, T., Smith, J.K., Hall, C., Lin, W. (2009). White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients. Neuroimage, 47(4), 11541162.CrossRefGoogle ScholarPubMed
Cherner, M., Ellis, R.J., Lazzaretto, D., Young, C., Mindt, M.R., Atkinson, J.H., Heaton, R.K. (2004). Effects of HIV-1 infection and aging on neurobehavioral functioning: Preliminary findings. AIDS, 18(Suppl. 1), S27S34.CrossRefGoogle ScholarPubMed
Cherner, M., Letendre, S., Heaton, R.K., Durelle, J., Marquie-Beck, J., Gragg, B., Grant, I. (2005). Hepatitis C augments cognitive deficits associated with HIV infection and methamphetamine. Neurology, 64(8), 13431347.CrossRefGoogle ScholarPubMed
Childs, E.A., Lyles, R.H., Selnes, O.A., Chen, B., Miller, E.N., Cohen, B.A., McArthur, J.C. (1999). Plasma viral load and CD4 lymphocytes predict HIV-associated dementia and sensory neuropathy. Neurology, 52(3), 607613.CrossRefGoogle ScholarPubMed
Chung, R.T., Andersen, J., Volberding, P., Robbins, G.K., Liu, T., Sherman, K.E., van der Horst, C. (2004). Peginterferon Alfa-2a plus ribavirin versus interferon alfa-2a plus ribavirin for chronic hepatitis C in HIV-coinfected persons. New England Journal of Medicine, 351(5), 451459.CrossRefGoogle ScholarPubMed
Clifford, D.B. (2008). HIV-associated neurocognitive disease continues in the antiretroviral era. Topics in HIV Medicine, 16(2), 9498.Google ScholarPubMed
Clifford, D.B., Evans, S.R., Yang, Y., Gulick, R.M. (2005). The neuropsychological and neurological impact of hepatitis C virus co-infection in HIV-infected subjects. AIDS, 19(Suppl. 3), S64S71.CrossRefGoogle Scholar
Clifford, D.B., Smurzynski, M., Park, L.S., Yeh, T.M., Zhao, Y., Blair, L., Evans, S.R. (2009). Effects of active HCV replication on neurologic status in HIV RNA virally suppressed patients. Neurology, 73(4), 309314.CrossRefGoogle ScholarPubMed
Cohen, R.A., Boland, R., Paul, R., Tashima, K.T., Schoenbaum, E.E., Celentano, D.D., Carpenter, C.C. (2001). Neurocognitive performance enhanced by highly active antiretroviral therapy in HIV-infected women. AIDS, 15(3), 341345.CrossRefGoogle ScholarPubMed
Cohen, R.A., de la Monte, S., Gongvatana, A., Ombao, H., Gonzalez, B., Devlin, K.N., Tashima, K.T. (2011). Plasma cytokine concentrations associated with HIV/hepatitis C coinfection are related to attention, executive and psychomotor functioning. Journal of Neuroimmunology, 233(1–2), 204210.CrossRefGoogle ScholarPubMed
Cohen, R.A., Harezlak, J., Gongvatana, A., Buchthal, S., Schifitto, G., Clark, U., Navia, B. (2010). Cerebral metabolite abnormalities in human immunodeficiency virus are associated with cortical and subcortical volumes. Journal of Neurovirology, 16(6), 435444.CrossRefGoogle ScholarPubMed
Cohen, R.A., Harezlak, J., Schifitto, G., Hana, G., Clark, U., Gongvatana, A., Navia, B. (2010). Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. Journal of Neurovirology, 16(1), 2532.CrossRefGoogle ScholarPubMed
Compton, W.M., Thomas, Y.F., Stinson, F.S., Grant, B.F. (2007). Prevalence, correlates, disability, and comorbidity of DSM-IV drug abuse and dependence in the United States: Results from the national epidemiologic survey on alcohol and related conditions. Archives of General Psychiatry, 64(5), 566576.CrossRefGoogle ScholarPubMed
Crum, N.F., Riffenburgh, R.H., Wegner, S., Agan, B.K., Tasker, S.A., Spooner, K.M., Wallace, M.R. (2006). Comparisons of causes of death and mortality rates among HIV-infected persons: Analysis of the pre-, early, and late HAART (highly active antiretroviral therapy) eras. Journal of Acquired Immune Deficiency Syndromes, 41(2), 194200.CrossRefGoogle ScholarPubMed
Cysique, L.A., Maruff, P., Brew, B.J. (2006). Variable benefit in neuropsychological function in HIV-infected HAART-treated patients. Neurology, 66(9), 14471450.CrossRefGoogle ScholarPubMed
Cysique, L.A., Vaida, F., Letendre, S., Gibson, S., Cherner, M., Woods, S.P., Ellis, R.J. (2009). Dynamics of cognitive change in impaired HIV-positive patients initiating antiretroviral therapy. Neurology, 73(5), 342348.CrossRefGoogle ScholarPubMed
Davis, P.E., Liddiard, H., McMillan, T.M. (2002). Neuropsychological deficits and opiate abuse. Drug and Alcohol Dependence, 67(1), 105108.CrossRefGoogle Scholar
de la Monte, S.M., Longato, L., Tong, M., DeNucci, S., Wands, J.R. (2009). The liver-brain axis of alcohol-mediated neurodegeneration: Role of toxic lipids. International Journal of Environmental Research and Public Health, 6(7), 20552075.CrossRefGoogle Scholar
de la Monte, S.M., Tong, M., Nguyen, V., Setshedi, M., Longato, L., Wands, J.R. (2010). Ceramide-mediated insulin resistance and impairment of cognitive-motor functions. Journal of Alzheimer's Disease, 21(3), 967984.CrossRefGoogle Scholar
Deeks, S.G., Phillips, A.N. (2009). HIV infection, antiretroviral treatment, ageing, and non-AIDS related morbidity. BMJ (Clinical Research Ed.), 338, a3172.CrossRefGoogle ScholarPubMed
Di Sclafani, V., Tolou-Shams, M., Price, L.J., Fein, G. (2002). Neuropsychological performance of individuals dependent on crack-cocaine, or crack-cocaine and alcohol, at 6 weeks and 6 months of abstinence. Drug and Alcohol Dependence, 66(2), 161171.CrossRefGoogle ScholarPubMed
Eldreth, D.A., Matochik, J.A., Cadet, J.L., Bolla, K.I. (2004). Abnormal brain activity in prefrontal brain regions in abstinent marijuana users. Neuroimage, 23(3), 914920.CrossRefGoogle ScholarPubMed
Ellis, R., Langford, D., Masliah, E. (2007). HIV and antiretroviral therapy in the brain: Neuronal injury and repair. Nature Reviews. Neuroscience, 8(1), 3344.CrossRefGoogle ScholarPubMed
Ersche, K.D., Clark, L., London, M., Robbins, T.W., Sahakian, B.J. (2006). Profile of executive and memory function associated with amphetamine and opiate dependence. Neuropsychopharmacology, 31(5), 10361047.CrossRefGoogle ScholarPubMed
Fals-Stewart, W., Schafer, J., Lucente, S., Rustine, T., Brown, L. (1994). Neurobehavioral consequences of prolonged alcohol and substance abuse: A review of findings and treatment implications. Clinical Psychology Review, 14(8), 755778.CrossRefGoogle Scholar
Fein, G., Torres, J., Price, L.J., Di Sclafani, V. (2006). Cognitive performance in long-term abstinent alcoholic individuals. Alcoholism, Clinical and Experimental Research, 30(9), 15381544.CrossRefGoogle ScholarPubMed
Fernandez-Serrano, M.J., Perez-Garcia, M., Schmidt Rio-Valle, J., Verdejo-Garcia, A. (2010). Neuropsychological consequences of alcohol and drug abuse on different components of executive functions. Journal of Psychopharmacology, 24(9), 13171332.CrossRefGoogle Scholar
Fernandez-Serrano, M.J., Perez-Garcia, M., Verdejo-Garcia, A. (2011). What are the specific vs. generalized effects of drugs of abuse on neuropsychological performance? Neuroscience and Biobehavioral Reviews, 35(3), 377406.CrossRefGoogle Scholar
Forton, D.M., Allsop, J.M., Cox, I.J., Hamilton, G., Wesnes, K., Thomas, H.C., Taylor-Robinson, S.D. (2005). A review of cognitive impairment and cerebral metabolite abnormalities in patients with hepatitis C infection. AIDS, 19(Suppl. 3), S53S63.CrossRefGoogle ScholarPubMed
Forton, D.M., Allsop, J.M., Main, J., Foster, G.R., Thomas, H.C., Taylor-Robinson, S.D. (2001). Evidence for a cerebral effect of the hepatitis C virus. Lancet, 358(9275), 3839.CrossRefGoogle Scholar
Forton, D.M., Thomas, H.C., Murphy, C.A., Allsop, J.M., Foster, G.R., Main, J., Taylor-Robinson, S.D. (2002). Hepatitis C and cognitive impairment in a cohort of patients with mild liver disease. Hepatology, 35(2), 433439.CrossRefGoogle Scholar
Golden, C.J. (1978). Stroop Color and Word Test. Chicago: Stoelting.Google ScholarPubMed
Gongvatana, A., Cohen, R.A., Correia, S., Devlin, K.N., Miles, J., Clark, U.S., Tashima, K.T. (2011, February). Impact of Hepatitis C and HIV coinfection on cerebral white matter integrity. Proceedings of the 39th Annual Meeting of the International Neuropsychological Society, Boston, MA.Google Scholar
Gongvatana, A., Schweinsburg, B.C., Taylor, M.J., Theilmann, R.J., Letendre, S.L., Alhassoon, O.M., Grant, I. (2009). White matter tract injury and cognitive impairment in human immunodeficiency virus-infected individuals. Journal of Neurovirology, 15(2), 187195.CrossRefGoogle ScholarPubMed
Grant, B.F. (1996). Prevalence and correlates of drug use and DSM-IV drug dependence in the United States: Results of the National Longitudinal Alcohol Epidemiologic Survey. Journal of Substance Abuse, 8(2), 195210.CrossRefGoogle ScholarPubMed
Green, J.E., Saveanu, R.V., Bornstein, R.A. (2004). The effect of previous alcohol abuse on cognitive function in HIV infection. American Journal of Psychiatry, 161(2), 249254.CrossRefGoogle ScholarPubMed
Gruber, S.A., Silveri, M.M., Yurgelun-Todd, D.A. (2007). Neuropsychological consequences of opiate use. Neuropsychology Review, 17(3), 299315.CrossRefGoogle ScholarPubMed
Harezlak, J., Buchthal, S., Taylor, M., Schifitto, G., Zhong, J., Daar, E., Navia, B. (2011). Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS, 25(5), 625633.CrossRefGoogle ScholarPubMed
Hasin, D.S., Stinson, F.S., Ogburn, E., Grant, B.F. (2007). Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Archives of General Psychiatry, 64(7), 830842.CrossRefGoogle ScholarPubMed
Heaton, R.K., Clifford, D.B., Franklin, D.R. Jr., Woods, S.P., Ake, C., Vaida, F., Grant, I. (2010). HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology, 75(23), 20872096.CrossRefGoogle ScholarPubMed
Heaton, R.K., Grant, I., Butters, N., White, D.A., Kirson, D., Atkinson, J.H., … the HNRC Group. (1995). The HNRC 500—neuropsychology of HIV infection at different disease stages. HIV Neurobehavioral Research Center. Journal of the International Neuropsychological Society, 1(3), 231251.CrossRefGoogle ScholarPubMed
Heaton, R.K., Miller, W., Taylor, M., Grant, I. (2004). Revised comprehensive norms for an expanded Halstead-Reitan battery: Demographically adjusted neuropsychological norms for African American and Caucasian adults. Lutz, FL: Psychological Assessment Resources.Google Scholar
Hesselink, J.R., Tien, R., Spoto, G., Jernigan, T.L., Grant, I. (1991, June). Accelerated brain atrophy and parenchymal change in patients with AIDS. Proceedings of the International Conference on AIDS, Florence, Italy.Google Scholar
Hilsabeck, R.C., Castellon, S.A., Hinkin, C.H. (2005). Neuropsychological aspects of coinfection with HIV and hepatitis C virus. Clinical Infectious Diseases, 41(Suppl. 1), S38S44.CrossRefGoogle ScholarPubMed
Hilsabeck, R.C., Perry, W., Hassanein, T.I. (2002). Neuropsychological impairment in patients with chronic hepatitis C. Hepatology, 35(2), 440446.CrossRefGoogle ScholarPubMed
Hinkin, C.H., Castellon, S.A., Levine, A.J., Barclay, T.R., Singer, E.J. (2008). Neurocognition in individuals co-infected with HIV and hepatitis C. Journal of Addictive Diseases, 27(2), 1117.CrossRefGoogle ScholarPubMed
Janssen, R.S., Saykin, A.J., Cannon, L., Campbell, J., Pinsky, P.F., Hessol, N.A., Kaplan, J.E. (1989). Neurological and neuropsychological manifestations of HIV-1 infection: Association with AIDS-related complex but not asymptomatic HIV-1 infection. Annals of Neurology, 26(5), 592600.CrossRefGoogle Scholar
Jernigan, T.L., Archibald, S., Hesselink, J.R., Atkinson, J.H., Velin, R.A., McCutchan, J.A., Grant, I. (1993). Magnetic resonance imaging morphometric analysis of cerebral volume loss in human immunodeficiency virus infection. The HNRC Group. Archives of Neurology, 50(3), 250255.CrossRefGoogle Scholar
Kellogg, S.H., McHugh, P.F., Bell, K., Schluger, J.H., Schluger, R.P., LaForge, K.S., Kreek, M.J. (2003). The Kreek-McHugh-Schluger-Kellogg scale: A new, rapid method for quantifying substance abuse and its possible applications. Drug and Alcohol Dependence, 69(2), 137150.CrossRefGoogle Scholar
Kim, W.R. (2002). The burden of hepatitis C in the United States. Hepatology, 36(5 Suppl. 1), S30S34.CrossRefGoogle Scholar
Kløve, H. (1963). Grooved pegboard. Lafayette, IN: Lafayette Instruments.Google Scholar
Kramer, L., Bauer, E., Funk, G., Hofer, H., Jessner, W., Steindl-Munda, P., Ferenci, P. (2002). Subclinical impairment of brain function in chronic hepatitis C infection. Journal of Hepatology, 37(3), 349354.CrossRefGoogle ScholarPubMed
Laskus, T., Radkowski, M., Bednarska, A., Wilkinson, J., Adair, D., Nowicki, M., Rakela, J. (2002). Detection and analysis of hepatitis C virus sequences in cerebrospinal fluid. Journal of Virology, 76(19), 1006410068.CrossRefGoogle ScholarPubMed
Letendre, S.L., McCutchan, J.A., Childers, M.E., Woods, S.P., Lazzaretto, D., Heaton, R.K., Ellis, R.J. (2004). Enhancing antiretroviral therapy for human immunodeficiency virus cognitive disorders. Annals of Neurology, 56(3), 416423.CrossRefGoogle ScholarPubMed
Letendre, S.L., Paulino, A.D., Rockenstein, E., Adame, A., Crews, L., Cherner, M., Masliah, E. (2007). Pathogenesis of hepatitis C virus coinfection in the brains of patients infected with HIV. Journal of Infectious Diseases, 196(3), 361370.CrossRefGoogle Scholar
Lundqvist, T. (2005). Cognitive consequences of cannabis use: Comparison with abuse of stimulants and heroin with regard to attention, memory and executive functions. Pharmacology, Biochemistry and Behavior, 81(2), 319330.CrossRefGoogle Scholar
Martin-Thormeyer, E.M., Paul, R.H. (2009). Drug abuse and hepatitis C infection as comorbid features of HIV associated neurocognitive disorder: Neurocognitive and neuroimaging features. Neuropsychology Review, 19(2), 215231.CrossRefGoogle Scholar
McArthur, J.C. (2004). HIV dementia: An evolving disease. Journal of Neuroimmunology, 157(1–2), 310.CrossRefGoogle Scholar
McArthur, J.C., McClernon, D.R., Cronin, M.F., Nance-Sproson, T.E., Saah, A.J., St Clair, M., Lanier, E.R. (1997). Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Annals of Neurology, 42(5), 689698.CrossRefGoogle ScholarPubMed
McCrea, M., Cordoba, J., Vessey, G., Blei, A.T., Randolph, C. (1996). Neuropsychological characterization and detection of subclinical hepatic encephalopathy. Archives of Neurology, 53(8), 758763.CrossRefGoogle ScholarPubMed
McCutchan, J.A., Wu, J.W., Robertson, K., Koletar, S.L., Ellis, R.J., Cohn, S., Williams, P.L. (2007). HIV suppression by HAART preserves cognitive function in advanced, immune-reconstituted AIDS patients. AIDS, 21(9), 11091117.CrossRefGoogle ScholarPubMed
Mocroft, A., Ledergerber, B., Katlama, C., Kirk, O., Reiss, P., d'Arminio Monforte, A., Lundgren, J.D. (2003). Decline in the AIDS and death rates in the EuroSIDA study: An observational study. Lancet, 362(9377), 2229.CrossRefGoogle Scholar
Monga, H.K., Rodriguez-Barradas, M.C., Breaux, K., Khattak, K., Troisi, C.L., Velez, M., Yoffe, B. (2001). Hepatitis C virus infection-related morbidity and mortality among patients with human immunodeficiency virus infection. Clinical Infectious Diseases, 33(2), 240247.CrossRefGoogle ScholarPubMed
Moore, D.J., Masliah, E., Rippeth, J.D., Gonzalez, R., Carey, C.L., Cherner, M., Grant, I. (2006). Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS, 20(6), 879887.CrossRefGoogle ScholarPubMed
Morgello, S., Estanislao, L., Ryan, E., Gerits, P., Simpson, D., Verma, S., Sharp, V. (2005). Effects of hepatic function and hepatitis C virus on the nervous system assessment of advanced-stage HIV-infected individuals. AIDS, 19(Suppl. 3), S116S122.CrossRefGoogle ScholarPubMed
Nath, A., Maragos, W.F., Avison, M.J., Schmitt, F.A., Berger, J.R. (2001). Acceleration of HIV dementia with methamphetamine and cocaine. Journal of Neurovirology, 7(1), 6671.Google ScholarPubMed
O'Malley, S., Adamse, M., Heaton, R.K., Gawin, F.H. (1992). Neuropsychological impairment in chronic cocaine abusers. American Journal of Drug and Alcohol Abuse, 18(2), 131144.CrossRefGoogle Scholar
Obel, N., Thomsen, H.F., Kronborg, G., Larsen, C.S., Hildebrandt, P.R., Sorensen, H.T., Gerstoft, J. (2007). Ischemic heart disease in HIV-infected and HIV-uninfected individuals: A population-based cohort study. Clinical Infectious Diseases, 44(12), 16251631.CrossRefGoogle ScholarPubMed
Palella, F.J. Jr., Baker, R.K., Moorman, A.C., Chmiel, J.S., Wood, K.C., Brooks, J.T., Holmberg, S.D. (2006). Mortality in the highly active antiretroviral therapy era: Changing causes of death and disease in the HIV outpatient study. Journal of Acquired Immune Deficiency Syndromes, 43(1), 2734.CrossRefGoogle Scholar
Pascual-Leone, A., Dhuna, A., Anderson, D.C. (1991). Longterm neurological complications of chronic, habitual cocaine abuse. Neurotoxicology, 12(3), 393400.Google Scholar
Paul, R.H., Ernst, T., Brickman, A.M., Yiannoutsos, C.T., Tate, D.F., Cohen, R.A., Navia, B.A. (2008). Relative sensitivity of magnetic resonance spectroscopy and quantitative magnetic resonance imaging to cognitive function among nondemented individuals infected with HIV. Journal of the International Neuropsychological Society, 14(5), 725733.CrossRefGoogle Scholar
Paul, R.H., Yiannoutsos, C.T., Miller, E.N., Chang, L., Marra, C.M., Schifitto, G., Navia, B.A. (2007). Proton MRS and neuropsychological correlates in AIDS dementia complex: Evidence of subcortical specificity. Journal of Neuropsychiatry and Clinical Neurosciences, 19(3), 283292.CrossRefGoogle Scholar
Perry, W., Hilsabeck, R.C., Hassanein, T.I. (2008). Cognitive dysfunction in chronic hepatitis C: A review. Digestive Diseases and Sciences, 53(2), 307321.CrossRefGoogle ScholarPubMed
Pezawas, L.M., Fischer, G., Diamant, K., Schneider, C., Schindler, S.D., Thurnher, M., Kasper, S. (1998). Cerebral CT findings in male opioid-dependent patients: Stereological, planimetric and linear measurements. Psychiatry Research, 83(3), 139147.CrossRefGoogle ScholarPubMed
Phillips, A.N., Neaton, J., Lundgren, J.D. (2008). The role of HIV in serious diseases other than AIDS. AIDS, 22(18), 24092418.CrossRefGoogle ScholarPubMed
Pomara, N., Crandall, D.T., Choi, S.J., Johnson, G., Lim, K.O. (2001). White matter abnormalities in HIV-1 infection: A diffusion tensor imaging study. Psychiatry Research, 106(1), 1524.CrossRefGoogle ScholarPubMed
Powles, T., Robinson, D., Stebbing, J., Shamash, J., Nelson, M., Gazzard, B., Bower, M. (2009). Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. Journal of Clinical Oncology, 27(6), 884890.CrossRefGoogle Scholar
Radloff, L.S. (1977). The CES-D Scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385401.CrossRefGoogle Scholar
Reitan, R.M. (1992). Trail Making Test. Tucson, AZ: Reitan Neuropsychology Laboratory.Google ScholarPubMed
Rippeth, J.D., Heaton, R.K., Carey, C.L., Marcotte, T.D., Moore, D.J., Gonzalez, R., Grant, I. (2004). Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. Journal of the International Neuropsychological Society, 10(1), 114.CrossRefGoogle ScholarPubMed
Robertson, K.R., Robertson, W.T., Ford, S., Watson, D., Fiscus, S., Harp, A.G., Hall, C.D. (2004). Highly active antiretroviral therapy improves neurocognitive functioning. Journal of Acquired Immune Deficiency Syndromes, 36(1), 562566.CrossRefGoogle ScholarPubMed
Robertson, K.R., Smurzynski, M., Parsons, T.D., Wu, K., Bosch, R.J., Wu, J., Ellis, R.J. (2007). The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS, 21(14), 19151921.CrossRefGoogle ScholarPubMed
Ryan, E.L., Morgello, S., Isaacs, K., Naseer, M., Gerits, P. (2004). Neuropsychiatric impact of hepatitis C on advanced HIV. Neurology, 62(6), 957962.CrossRefGoogle Scholar
Sacktor, N., McDermott, M.P., Marder, K., Schifitto, G., Selnes, O.A., McArthur, J.C., Epstein, L. (2002). HIV-associated cognitive impairment before and after the advent of combination therapy. Journal of Neurovirology, 8(2), 136142.CrossRefGoogle ScholarPubMed
Sherman, K.E., Rouster, S.D., Chung, R.T., Rajicic, N. (2002). Hepatitis C Virus prevalence among patients infected with Human Immunodeficiency Virus: A cross-sectional analysis of the US adult AIDS Clinical Trials Group. Clinical Infectious Diseases, 34(6), 831837.CrossRefGoogle ScholarPubMed
Stern, R.A., Arruda, J.E., Somerville, J.A., Cohen, R.A., Boland, R.J., Stein, M.D., Martin, E.M. (1998). Neurobehavioral functioning in asymptomatic HIV-1 infected women. Journal of the International Neuropsychological Society, 4(2), 172178.CrossRefGoogle ScholarPubMed
Stoff, D.M. (2004). Mental health research in HIV/AIDS and aging: Problems and prospects. AIDS, 18(Suppl. 1), S3S10.CrossRefGoogle Scholar
Tarter, R.E., Hegedus, A.M., Van Thiel, D.H., Schade, R.R., Gavaler, J.S., Starzl, T.E. (1984). Nonalcoholic cirrhosis associated with neuropsychological dysfunction in the absence of overt evidence of hepatic encephalopathy. Gastroenterology, 86(6), 14211427.Google ScholarPubMed
Thompson, P.M., Dutton, R.A., Hayashi, K.M., Toga, A.W., Lopez, O.L., Aizenstein, H.J., Becker, J.T. (2005). Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 1564715652.CrossRefGoogle ScholarPubMed
Tozzi, V., Balestra, P., Bellagamba, R., Corpolongo, A., Salvatori, M.F., Visco-Comandini, U., Narciso, P. (2007). Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: Prevalence and risk factors. Journal of Acquired Immune Deficiency Syndromes, 45(2), 174182.CrossRefGoogle ScholarPubMed
Tozzi, V., Balestra, P., Lorenzini, P., Bellagamba, R., Galgani, S., Corpolongo, A., Narciso, P. (2005). Prevalence and risk factors for human immunodeficiency virus-associated neurocognitive impairment, 1996 to 2002: Results from an urban observational cohort. Journal of Neurovirology, 11(3), 265273.CrossRefGoogle ScholarPubMed
Valcour, V.G., Shikuma, C.M., Watters, M.R., Sacktor, N.C. (2004). Cognitive impairment in older HIV-1-seropositive individuals: Prevalence and potential mechanisms. AIDS, 18(Suppl. 1), S79S86.CrossRefGoogle ScholarPubMed
Valcour, V.G., Yee, P., Williams, A.E., Shiramizu, B., Watters, M., Selnes, O., Sacktor, N. (2006). Lowest ever CD4 lymphocyte count (CD4 nadir) as a predictor of current cognitive and neurological status in human immunodeficiency virus type 1 infection--The Hawaii Aging with HIV Cohort. Journal of Neurovirology, 12(5), 387391.CrossRefGoogle ScholarPubMed
van Gorp, W.G., Wilkins, J.N., Hinkin, C.H., Moore, L.H., Hull, J., Horner, M.D., Plotkin, D. (1999). Declarative and procedural memory functioning in abstinent cocaine abusers. Archives of General Psychiatry, 56(1), 8589.CrossRefGoogle ScholarPubMed
Weber, R., Sabin, C.A., Friis-Moller, N., Reiss, P., El-Sadr, W.M., Kirk, O., Lundgren, J.D. (2006). Liver-related deaths in persons infected with the human immunodeficiency virus: The D:A:D study. Archives of Internal Medicine, 166(15), 16321641.Google Scholar
Wechsler, D. (1997). Wechsler Adult Intelligence Scale-III (WAIS-III). San Antonio, TX: The Psychological Corporation.Google Scholar
Weissenborn, K., Krause, J., Bokemeyer, M., Hecker, H., Schuler, A., Ennen, J.C., Boker, K.W. (2004). Hepatitis C virus infection affects the brain-evidence from psychometric studies and magnetic resonance spectroscopy. Journal of Hepatology, 41(5), 845851.CrossRefGoogle ScholarPubMed
Wilkinson, J., Radkowski, M., Laskus, T. (2009). Hepatitis C virus neuroinvasion: Identification of infected cells. Journal of Virology, 83(3), 13121319.CrossRefGoogle ScholarPubMed
Woods, S.P., Moore, D.J., Weber, E., Grant, I. (2009). Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychology Review, 19(2), 152168.CrossRefGoogle ScholarPubMed

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 7
Total number of PDF views: 84 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-6mlss Total loading time: 0.326 Render date: 2021-01-19T06:44:34.801Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Tue Jan 19 2021 05:55:35 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Neurocognitive Effects of HIV, Hepatitis C, and Substance Use History
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Neurocognitive Effects of HIV, Hepatitis C, and Substance Use History
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Neurocognitive Effects of HIV, Hepatitis C, and Substance Use History
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *