Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-cvrnb Total loading time: 7.032 Render date: 2021-04-14T05:34:05.044Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

The heterogeneity of mild cognitive impairment: A neuropsychological analysis

Published online by Cambridge University Press:  03 November 2009

DAVID J. LIBON
Affiliation:
Department of Neurology, Drexel University College of Medicine, Philadelphia, Pennsylvania
SHARON X. XIE
Affiliation:
Departments of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania
JOEL EPPIG
Affiliation:
Department of Neurology, Drexel University College of Medicine, Philadelphia, Pennsylvania Department of Psychology, Temple University, Philadelphia, Pennsylvania
GRAHAM WICAS
Affiliation:
Department of Neurology, Drexel University College of Medicine, Philadelphia, Pennsylvania
MELISSA LAMAR
Affiliation:
Institute of Psychiatry, King’s College, London, United Kingdom
CAROL LIPPA
Affiliation:
Department of Neurology, Drexel University College of Medicine, Philadelphia, Pennsylvania
BRIANNE M. BETTCHER
Affiliation:
Department of Psychology, Temple University, Philadelphia, Pennsylvania
CATHERINE C. PRICE
Affiliation:
Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida
TANIA GIOVANNETTI
Affiliation:
Department of Psychology, Temple University, Philadelphia, Pennsylvania
ROD SWENSON
Affiliation:
Department of Neuroscience, University of North Dakota Medical School, Fargo, North Dakota
DENENE M. WAMBACH
Affiliation:
Department of Neurology, Drexel University College of Medicine, Philadelphia, Pennsylvania
Corresponding
E-mail address:

Abstract

A group of 94 nondemented patients self-referred to an outpatient memory clinic for memory difficulties were studied to determine the incidence of single versus multi-domain mild cognitive impairment (MCI) using Petersen criteria. Fifty-five community dwelling normal controls (NC) participants without memory complaints also were recruited. Tests assessing executive control, naming/lexical retrieval, and declarative memory were administered. Thirty-four patients exhibited single-domain MCI, 43 patients presented with multi-domain MCI. When the entire MCI sample (n = 77) was subjected to a cluster analysis, 14 patients were classified with amnesic MCI, 21 patients with dysexecutive MCI, and 42 patients were classified into a mixed/multi-domain MCI group involving low scores on tests of letter fluency, “animal” fluency, and delayed recognition discriminability. Analyses comparing the three cluster-derived MCI groups versus a NC group confirmed the presence of memory and dysexecutive impairment for the amnesic and dysexecutive MCI groups. The mixed MCI group produced lower scores on tests of letter fluency compared with the amnesic MCI and NC groups and lower scores on tests of naming and memory compared with the NC group. In summary, multi-domain MCI is quite common. These data suggest that MCI is a highly nuanced and complex clinical entity. (JINS, 2010, 16, 84–93.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

Adlam, A.L, Bozeat, S., Arnold, R., Watson, P., & Hodges, J.R. (2006). Semantic knowledge in mild cognitive impairment and mild Alzheimer’s disease. Cortex, 42, 675683.CrossRefGoogle ScholarPubMed
Andreasen, N., Minthon, L., Davidsson, P., Vanmechelen, E., Vanderstichele, H., Winblad, B., et al. (2001). Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Archives of Neurology, 58, 373379.CrossRefGoogle ScholarPubMed
Apostolova, L.G., Mosconi, L., Thompson, P.M., Green, A.E., Hwang, K.S., Ramirez, A., et al. (in press). Subregional hippocampal atrophy predicts Alzheimer’s dementia in the cognitively normal. Neurobiology of Aging.Google ScholarPubMed
Bollen, K.A. (1989). Structural Equations with Latent Variables. New York: John Wiley.CrossRefGoogle Scholar
Brooks, B.L., Iverson, G.L., & White, T. (2007). Substantial risk of “Accidental MCI” in healthy older adults: Base rates of low memory scores in neuropsychological assessment. Journal of the International Neuropsychological Society, 13, 490500.CrossRefGoogle ScholarPubMed
Brooks, B.L., Grant, G.L., Holdnack, J.A., & Feldman, H.H. (2008). Potential for misclassification of mild cognitive impairment: A study of memory scores on the Wechsler Memory Scale-III in healthy older adults. Journal of the International Neuropsychological Society, 14, 463478.CrossRefGoogle Scholar
Busse, A., Hensel, A., Gühne, U., Angermeyer, M.C., & Riedel-Heller, S.G. (2006). Mild cognitive impairment: Long-term course of four clinical subtypes. Neurology, 67, 21762185.CrossRefGoogle ScholarPubMed
Carew, T.G., Cloud, B.S., Lamar, M., Grossman, M., & Libon, D.J. (1997). Patterns of impairment in category fluency in Alzheimer’s disease and ischemic vascular dementia. Neuropsychology, 11, 400412.CrossRefGoogle Scholar
DeCarli, C. (2003). Mild cognitive impairment: Prevalence, prognosis, aetiology, and treatment. Lancet Neurology, 2, 1521.CrossRefGoogle Scholar
DeCarli, C., Frisoni, G.B., Clark, C.M., Harvey, D., Grundman, M., Petersen, R.C., et al. (2007). Qualitative estimates of medial temporal atrophy as a predictor of progression from mild cognitive impairment to dementia. Archives of Neurology, 64, 108115.CrossRefGoogle Scholar
Delano-Wood, L., Bondi, M.W., Sacco, J., Abeles, N., Jak, A.J., Libon, D.J., et al. (2009). Heterogeneity in mild cognitive impairment: Differences in neuropsychological profile and associated white matter lesion pathology. Journal of the International Neuropsychological Society, 15, 906914.CrossRefGoogle Scholar
Delis, D.C., Kramer, J.H., Kaplan, E., & Ober, B.A. (1987). The California Verbal Learning Test. New York: Psychological Corporation.Google ScholarPubMed
Dudas, R.B., Clague, F., Thompson, S.A., Graham, K.S., & Hodges, J.R. (2005). Episodic and semantic memory in mild cognitive impairment. Neuropsychologia, 43, 12661276.CrossRefGoogle ScholarPubMed
Dufouil, C., Alperovitch, A., Ducros, V., & Tzourio, C. (2003). Homocysteine, white matter hyperintensities, and cognition in healthy elderly people. Annals of Neurology, 53, 214221.CrossRefGoogle ScholarPubMed
Edwards, E.R., Lindquist, K., & Yaffe, K. (2004). Clinical profile and course of cognitively normal patients evaluated in memory disorders clinics. Neurology, 62, 16391642.CrossRefGoogle Scholar
Fagan, A.M., Roe, C.M., Xiong, C., Mintun, M.A., Morris, J.C., & Holtzman, D.M. (2007). Cerebrospinal fluid tau/amyloid42 ratio as a prediction of cognitive decline in nondemented older adults. Archives of Neurology, 64, 343349.CrossRefGoogle Scholar
Fernando, M.S., & Ince, P.G. (2004). Vascular pathologies and cognition in a population-based cohort of elderly people. Journal of the Neurological Sciences, 226, 1317.CrossRefGoogle Scholar
Fischer, P., Jungwirth, S., Zehetmayer, S., Weissgram, S., Hoenigschnabl, S., Gelpi, E., et al. (2007). Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology, 68, 288291.CrossRefGoogle Scholar
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle ScholarPubMed
Gainotti, G., Ferraccioli, M., Vita, M.G., & Marra, C. (2008). Patterns of neuropsychological impairment in MCI patients with small subcortical infarcts or hippocampal atrophy. Journal of the International Neuropsychological Society, 14, 611619.CrossRefGoogle ScholarPubMed
Giovannetti, T., Lamar, M., Cloud, B.S., Swenson, R., Fein, D., Kaplan, E., et al. (2001). Different underlying mechanisms for deficits in concept formation in dementia. Archives of Clinical Neuropsychology, 16, 547560.CrossRefGoogle ScholarPubMed
Graff-Radford, N.R., Crook, J.E., Lucas, J., Boeve, B.F., Knopman, D.S., Ivnik, R.J., et al. (2007). Association of low plasma a-42/a-40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Archives of Neurology, 64, 354362.CrossRefGoogle Scholar
Griffith, H.R., Netson, K.L., Harrell, L.E., Zamrini, E.Y., Brockington, J.C., & Marson, D.C. (2006). Amnestic mild cognitive impairment: Diagnostic outcomes and clinical prediction over a two-year time period. Journal of the International Neuropsychological Society, 12, 166175.CrossRefGoogle Scholar
Grossman, M., Libon, D.J., Forman, M.S., Wood, E.M., Moore, P., Farmer, J., et al. (2007). Distinct neuropsychological profiles in pathologically-defined patients with Frontotemporal lobe dementia. Archives of Neurology, 64, 16011609.CrossRefGoogle Scholar
Gourovitch, M.L., Kirkby, B.S., Goldberg, T.E., Weinberger, D.R., Gold, J.M., Esposito, G., et al. (2000). A comparison of rCBF patterns during letter and semantic fluency. Neuropsychology. 14, 353360.CrossRefGoogle ScholarPubMed
Hebert, L.E., Scherr, P.A., Bienias, J.L., Bennett, D.A., & Evans, D.A., (2003). Alzheimer Disease in the US population prevalence estimates using the 2000 census. Archives of Neurology, 60, 11191122.CrossRefGoogle ScholarPubMed
Hodges, J.R., Patterson, K., Ward, R., Garrard, P., Bak, T., Perry, R., et al. (1999). The differentiation of semantic dementia and frontal lobe dementia (temporal and frontal variants of frontotemporal dementia) from early Alzheimer’s disease: A comparative neuropsychological study. Neuropsychology, 13, 3140.CrossRefGoogle Scholar
Howieson, D.B., Carlson, N.E., Moore, M., Wasserman, D., Abendroth, C.D., Payne-Murphy, J., et al. (2008). Trajectory of mild cognitive impairment onset. Journal of the International Neuropsychological Society, 14, 192198.CrossRefGoogle ScholarPubMed
Jack, C.R., Petersen, R.C., Xu, Y.C., O’Brien, P.C., Smith, G.E., Ivnik, R.J., et al. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52, 13971403.CrossRefGoogle Scholar
Kaplan, E., Goodglass, H., & Weintraub, S. (1983). The Boston Naming Test. Philadelphia: Lea and Febiger.Google Scholar
Kramer, J.H., Jurik, J., Sha, S.J., Rankin, K.P., Rosen, H.J., Johnson, J.K., et al. (2003). Distinctive neuropsychological patterns in frontotemporal dementia, semantic dementia, and Alzheimer disease. Cognitive and Behavioral Neurology, 16, 211218.CrossRefGoogle Scholar
Lamar, M., Swenson, R., Kaplan, E., & Libon, D.J. (2004). Characterizing alterations in executive functioning across distinct subtypes of cortical and subcortical dementia. The Clinical Neuropsychologist, 18, 2231.CrossRefGoogle ScholarPubMed
Lamar, M., Price, C., Davis, K.L., Kaplan, E., & Libon, D.J. (2002). Capacity to maintain mental set in dementia. Neuropsychologia, 40, 435445.CrossRefGoogle ScholarPubMed
Lawton, M.P., & Brody, E. (1969). Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist, 9, 179186.CrossRefGoogle Scholar
Leach, L., Kaplan, E., Rewilak, D., Richards, B., & Proulx, B. (2000). The Kaplan Baycrest Neurocognitive Assessment. San Antonio, TX: The Psychological Corp.Google Scholar
Libon, D.J., Bogdanoff, B., Cloud, B.S., Skalina, S., Giovannetti, T., Gitlin, H.L., et al. (1998). Declarative and procedural learning, qualitative measures of the hippocampus, and subcortical white alterations in Alzheimer’s disease and ischaemic vascular dementia, Journal of Clinical and Experimental Psychology, 20, 3041.Google Scholar
Libon, D.J., Bogdanoff, B., Leopold, N., Hurka, R., Bonavita, J., Skalina, S., et al. (2001). Neuropsychological profile associated with subcortical white matter alterations and Parkinson’s disease: Implications for the diagnosis of dementia. Archives of Clinical Neuropsychology, 16, 1932.CrossRefGoogle Scholar
Libon, D.J., Mattson, R.E., Glosser, G., Kaplan, E., Malamut, B.L., Sands, L.P., et al. (1996). A nine word dementia version of the California Verbal Learning Test. Clinical Neuropsychologist, 10, 237244.CrossRefGoogle Scholar
Libon, D.J., McMilan, C., Powers, C., Massimo, L., Khan, A., Morgan, B., et al. (2009). Neurocognitive contributions to verbal fluency deficits in frontotemporal lobar degeneration. Neurology, 73, 535542.CrossRefGoogle ScholarPubMed
Libon, D.J., Price, C.C., Giovannetti, T., Swenson, R., Bettcher, B.M., Heilman, K.M., et al. (2008). Linking MRI subcortical vascular disease with patterns of neuropsychological impairment: Evidence for a threshold effect. Stroke, 39, 806813.CrossRefGoogle Scholar
Libon, D.J., Xie, S., Moore, P., Farmer, J., Antani, S., McCawley, G., et al. (2007). Patterns of neuropsychological impairment associated with frontotemporal dementia: A factor analytic study. Neurology, 68, 368375.CrossRefGoogle Scholar
Lopez, O.L., Kuller, K.H., Becker, J.T., Dulberg, C., Sweet, R.A., Gach, M., et al. (2007). Incidence of dementia in mild cognitive impairment in the cardiovascular health study cognition study. Archives of Neurology, 64, 416420.CrossRefGoogle Scholar
Lopez, O.L., Jagust, W.J., DeKosky, S.T., Becker, J.T., Fitzpatrick, A., Dulberg, C., et al. (2003). Prevalence and classification of mild cognitive impairment in the Cardiovascular Health Study Cognition Study. Archives of Neurology, 60, 13851399.CrossRefGoogle ScholarPubMed
Morris, J.C., Storandt, M., Miller, J.P., McKeel, D.W., Price, J.L., Rubin, E.H., et al. (2001). Mild cognitive impairment represents early stage Alzheimer disease. Archives of Neurology, 58, 397405.CrossRefGoogle ScholarPubMed
Monsch, A., Bondi, M., Butters, N., Salmon, D.P., Katzman, R., & Thal, L.J. (1992). Comparison of verbal fluency tasks in the detection of dementia of the Alzheimer’s type. Archives of Neurology, 49, 12531258.CrossRefGoogle Scholar
Mummery, C.J., Patterson, K., Hodges, J.R., & Wise, R.J. (1996). Generating ‘tiger’ as an animal name or a word beginning with t: Differences in brain activation. Proceedings of the Royal Society of Science B Biological Science, 263, 989995.CrossRefGoogle ScholarPubMed
Murphy, K.J., Rich, J.B., & Troyer, A.K. (2006). Verbal fluency patterns in amnestic mild cognitive impairment are characteristic of Alzheimer’s type dementia. Journal of the International Neuropsychological Society, 12, 570574.CrossRefGoogle ScholarPubMed
Nordlund, A., Rolstad, S., Klang, O., Lind, K., Pedersen, M., Blennow, K., et al. (2008). Episodic memory and speed-attention deficits are associated with Alzheimer-typical CSF abnormalities in MCI. Journal of the International Neuropsychological Society, 14, 582590.CrossRefGoogle ScholarPubMed
Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56, 303308.CrossRefGoogle ScholarPubMed
Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, P.V., et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 19851992.CrossRefGoogle ScholarPubMed
Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183194.CrossRefGoogle ScholarPubMed
Petersen, R.C., & Morris, J.D. (2005). Mild cognitive impairment as a clinical entity and treatment target. Archives of Neurology, 62, 11601163.CrossRefGoogle ScholarPubMed
Phelps, E.A., Hyder, F., Blamire, A.M., & Shulman, R.G. (1997). fMRI of the prefrontal cortex during overt verbal fluency. Neuroreport, 8, 561565.CrossRefGoogle ScholarPubMed
Price, C.C., Garrett, K.D., Jefferson, A.L., Cosentino, S., Tanner, J., Penney, D.L., et al. (2009). The role of Leukoaraiosis severity on learning and memory in dementia: Performance differences on a 9-word list learning test. The Clinical Neuropsychologist, 23, 118.CrossRefGoogle Scholar
Price, C., Jefferson, A.L., Merino, J., Heilman, K., & Libon, D.J. (2005). Towards an operational definition of the ‘Research Criteria for Subcortical Vascular Dementia’: Integrating neuroradilogical and neuropsychological data. Neurology, 65, 376382.CrossRefGoogle Scholar
Rascovsky, K., Salmon, D.P., Hansen, L.A., Thal, L.J., & Galasko, D. (2007). Disparate letter and semantic category fluency deficits in autopsy-confirmed frontotemporal dementia and Alzheimer’s disease. Neuropsychology, 21, 2030.CrossRefGoogle ScholarPubMed
Riekse, R.G., Leverenz, J.B., McCormick, W., Bowen, J.D., Teri, L., Nochlin, D., et al. (2004). Effect of vascular lesions on cognition in Alzheimer’s disease: A community-based study. Journal of the American Geriatric Society, 52, 14421448.CrossRefGoogle ScholarPubMed
Ritchie, K., & Touchon, J. (2000). Mild cognitive impairment: Conceptual basis and current nosological status. Lancet, 335, 225228.CrossRefGoogle Scholar
Rogers, T.T., Ivanoiu, A., Patterson, K., & Hodges, J.R. (2006). Semantic memory in Alzheimer’s disease and the frontotemporal dementias: A longitudinal study of 236 patients. Neuropsychology, 20, 319335.CrossRefGoogle ScholarPubMed
Sammel, M.D., Ratcliffe, S.J., & Leiby, B.E. (2006). Factor analysis. In Chow, S.C. (Ed.), Encyclopedia of Biopharmaceutical Statistics (2nd ed.). New York: Marcel Dekker, Inc.Google Scholar
Simonsen, A., McGuire, J., Hansson, O., Zetterberg, H., Podust, V.N., Davies, H.A., et al. (2007). Novel panel of cerebrospinal fluid biomarkers for the prediction of progression to Alzheimer dementia in patients with mild cognitive impairment. Archives of Neurology, 64, 366370.CrossRefGoogle ScholarPubMed
Spreen, O., & Strauss, E.A. (1990). Compendium of Neuropsychological Tests. New York: Oxford University Press.Google Scholar
Szolnoki, Z., Somogyvari, F., Kondacs, A., Szabo, M., Fodor, L., Bene, J., et al. (2004). Specific apoe genotypes in combination with the ace d/d or mthfr 677tt mutation yield an independent genetic risk of leukoaraiosis. Acta Neurologicia Scandinavia, 109, 222227.CrossRefGoogle ScholarPubMed
Tapiola, T., Pennanen, C., Tapiola, M., Tervo, S., Kivipelto, M., Hänninen, T., et al. (2008). MRI of hippocampus and entorhinal cortex in mild cognitive impairment: A follow-up study. Neurobiology of Aging, 29, 3138.CrossRefGoogle Scholar
Twamley, E.W., Ropacki, S.A., & Bondi, M.W. (2006). Neuropsychological and neuroimaging changes in preclinical Alzheimer’s disease. Journal of the International Neuropsychological Society, 12, 707735.CrossRefGoogle ScholarPubMed
Wechsler, D. (1945). A standardized memory test for clinical use. Journal of Psychology, 19, 8795.CrossRefGoogle Scholar
Wildgruber, D., Kischka, U., Ackermann, H., Klose, U., & Grodd, W. (1999). Dynamic pattern of brain activation during sequencing of word strings evaluated by fMRI. Brain Research: Cognitive Brain Research, 7, 285294.Google ScholarPubMed
Yesavage, J. (1986). The use of self-rating depression scales in the elderly. In Poon, (ed.), Handbook for Clinical Memory Assessment. Washington, D.C.: APA.Google Scholar
Zanetti, M., Ballabio, C., Abbate, C., Cutaia, C., Vergani, C., & Bergamaschini, L. 2006). Mild cognitive impairment subtypes and vascular dementia in community-dwelling elderly people: A 3-year follow-up study. Journal of the American Geriatric Society, 54, 580586.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 90
Total number of PDF views: 479 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 14th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The heterogeneity of mild cognitive impairment: A neuropsychological analysis
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The heterogeneity of mild cognitive impairment: A neuropsychological analysis
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The heterogeneity of mild cognitive impairment: A neuropsychological analysis
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *