Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-13T18:38:34.477Z Has data issue: false hasContentIssue false

Discrepancies among Measures of Executive Functioning in a Subsample of Young Adult Survivors of Childhood Brain Tumor: Associations with Treatment Intensity

Published online by Cambridge University Press:  26 September 2016

Mark D. McCurdy
Affiliation:
Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania Department of Psychology, Drexel University, Philadelphia, Pennsylvania
Elise M. Turner
Affiliation:
Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania Department of Psychology, University of Florida, Gainesville, Florida
Lamia P. Barakat
Affiliation:
Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
Wendy L. Hobbie
Affiliation:
Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
Janet A. Deatrick
Affiliation:
University of Pennsylvania School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
Iris Paltin
Affiliation:
Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
Michael J. Fisher
Affiliation:
Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
Matthew C. Hocking*
Affiliation:
Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
*
Correspondence and reprint requests to: Matthew C. Hocking, Division of Oncology, The Children’s Hospital of Philadelphia, 3501 Civic Center Blvd., 10211 CTRB, Philadelphia, PA 19104. E-mail: hockingm@email.chop.edu

Abstract

Objectives: Treatments for childhood brain tumors (BT) confer substantial risks to neurological development and contribute to neuropsychological deficits in young adulthood. Evidence suggests that individuals who experience more significant neurological insult may lack insight into their neurocognitive limitations. The present study compared survivor, mother, and performance-based estimates of executive functioning (EF), and their associations with treatment intensity history in a subsample of young adult survivors of childhood BTs. Methods: Thirty-four survivors (52.9% female), aged 18 to 30 years (M=23.5; SD=3.4), 16.1 years post-diagnosis (SD=5.9), were administered self-report and performance-based EF measures. Mothers also rated survivor EF skills. Survivors were classified by treatment intensity history into Minimal, Average/Moderate, or Intensive/Most-Intensive groups. Discrepancies among survivor, mother, and performance-based EF estimates were compared. Results: Survivor-reported and performance-based measures were not correlated, although significant associations were found between mother-reported and performance measures. Survivors in the Intensive/Most-Intensive treatment group evidenced the greatest score discrepancies, reporting less executive dysfunction relative to mother-reported F(2,31)=7.81, p<.01, and performance-based measures F(14,50)=2.54, p<.05. Conversely, survivors in the Minimal treatment group reported greater EF difficulties relative to mothers t(8)=2.82, p<.05, but not performance-based estimates (ps>.05). Conclusions: There may be a lack of agreement among survivor, mother, and performance-based estimates of EF skills in young adult survivors of childhood BT, and these discrepancies may be associated with treatment intensity history. Neuropsychologists should use a multi-method, multi-reporter approach to assessment of EF in this population. Providers also should be aware of these discrepancies as they may be a barrier to intervention efforts. (JINS, 2016, 22, 900–910)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Askins, M. A., & Moore, B. D. III. (2008). Preventing neurocognitive late effects in childhood cancer survivors. Journal of Child Neurology, 23, 11601171.Google ScholarPubMed
Barakat, L. P., Li, Y., Hobbie, W. L., Ogle, S. K., Hardie, T., Volpe, E. M., & Deatrick, J. A. (2015). Health-related quality of life of adolescent and young adult survivors of childhood brain tumors. Psychooncology, 24(7), 804811. doi:10.1002/pon.3649 CrossRefGoogle Scholar
Burgess, P. W., Alderman, N., Evans, J., Emslie, H., & Wilson, B. A. (1998). The ecological validity of tests of executive function. Journal of the International Neuropsychological Society, 4(06), 547558.CrossRefGoogle ScholarPubMed
Butler, R. W., Sahler, O. J. Z., Askins, M. A., Alderfer, M. A., Katz, E. R., Phipps, S., & Noll, R. B. (2008). Interventions to improve neuropsychological functioning in childhood cancer survivors. Developmental Disabilities Research Reviews, 14, 251258.CrossRefGoogle ScholarPubMed
Deatrick, J. A., Hobbie, W., Ogle, S., Fisher, M. J., Barakat, L., Hardie, T., & Ginsberg, J. P. (2014). Competence in caregivers of adolescent and young adult childhood brain tumor survivors. Health Psychology, 33(10), 11031112. doi:10.1037/a0033756 CrossRefGoogle Scholar
Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan Executive Function System (D-KEFS) Examiner’s Manual. San Antonio, TX: Pearson.Google Scholar
Dolecek, T. A., Propp, J. M., Stroup, N. E., & Kruchko, C. (2012). CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro-oncology, 14(Suppl. 5), v149. doi:10.1093/neuonc/nos218 CrossRefGoogle ScholarPubMed
Fotopoulou, A., Pernigo, S., Maeda, R., Rudd, A., & Kopelman, M. A. (2010). Implicit awareness in anosognosia for hemiplegia: Unconscious interference without conscious re-representation. Brain, 133(Pt 12), 35643577. doi:10.1093/brain/awq233 CrossRefGoogle ScholarPubMed
Gioia, G. A., & Isquith, P. K. (2004). Ecological assessment of executive function in traumatic brain injury. Developmental Neuropsychology, 25(1-2), 135158.CrossRefGoogle ScholarPubMed
Goldberg, E., & Podell, K. (2000). Adaptive decision making, ecological validity, and the frontal lobes. Journal of Clinical and Experimental Neuropsychology, 22(1), 5668.CrossRefGoogle ScholarPubMed
Gragert, M. N., & Ris, M. D. (2011). Neuropsychological late effects and rehabilitation following pediatric brain tumor. Journal of Pediatric Rehabilitation Medicine, 4(1), 4758. doi:10.3233/PRM-2011-0153 CrossRefGoogle ScholarPubMed
Hart, T., Sherer, M., Whyte, J., Polansky, M., & Novack, T. A. (2004). Awareness of behavioral, cognitive, and physical deficits in acute traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 85(9), 14501456.CrossRefGoogle ScholarPubMed
Hart, T., Whyte, J., Kim, J., & Vaccaro, M. (2005). Executive function and self-awareness of “real-world” behavior and attention deficits following traumatic brain injury. Journal of Head Trauma Rehabilitation, 20(4), 333347.CrossRefGoogle ScholarPubMed
Hocking, M. C., McCurdy, M., Turner, E., Kazak, A. E., Noll, R. B., Phillips, P., & Barakat, L. P. (2015). Social competence in pediatric brain tumor survivors: Application of a model from social neuroscience and developmental psychology. Pediatric Blood and Cancer, 62(3), 375384. doi:10.1002/pbc.25300 CrossRefGoogle Scholar
Kazak, A. E., Hocking, M. C., Ittenbach, R. F., Meadows, A. T., Hobbie, W., Werba DeRosa, B., & Reilly, A. (2012). A review of the intensity of treatment rating scale: Classifying the intensity of pediatric cancer treatment. Pediatric Blood and Cancer, 59, 9699.CrossRefGoogle Scholar
Kelley, E., Sullivan, C., Loughlin, J. K., Hutson, L., Dahdah, M. N., Long, M. K., & Poole, J. H. (2014). Self-awareness and neurobehavioral outcomes, 5 years or more after moderate to severe brain injury. Journal of Head Trauma Rehabilitation, 29(2), 147152. doi:10.1097/HTR.0b013e31826db6b9 CrossRefGoogle ScholarPubMed
King, G. (1986). How not to lie with statistics: Avoiding common mistakes in quantitative political science. American Journal of Political Science, 30(3), 666687.CrossRefGoogle ScholarPubMed
Kirsch, D. G., & Tarbell, N. J. (2004). Conformal radiation therapy for childhood CNS tumors. Oncologist, 9(4), 442450.CrossRefGoogle ScholarPubMed
Kohler, B. A., Ward, E., McCarthy, B. J., Schymura, M. J., Ries, L. A., Eheman, C., & Edwards, B. K. (2011). Annual report to the nation on the status of cancer, 1975-2007, featuring tumors of the brain and other nervous system. Journal of the National Cancer Intititute, 103(9), 714736. doi:10.1093/jnci/djr077 CrossRefGoogle Scholar
MacAllister, W. S., Christodoulou, C., Troxell, R., Milazzo, M., Block, P., Preston, T. E., & Krupp, L. B. (2009). Fatigue and quality of life in pediatric multiple sclerosis. Multiple Sclerosis, 15, 15021508.CrossRefGoogle ScholarPubMed
Maddrey, A. M., Bergeron, J. A., Lombardo, E. R., McDonald, N. K., Mulne, A. F., Barenberg, P. D., & Bowers, D. C. (2005). Neuropsychological performance and quality of life of 10 year survivors of childhood medulloblastoma. Journal of Neuro-oncology, 72, 245253.CrossRefGoogle ScholarPubMed
Mahone, E. M., Zabel, T. A., Levey, E., Verda, M., & Kinsman, S. (2002). Parent and self-report of executive function in adolescents withm myelomeningocele and hydrocephalus. Child Neuropsychology, 8, 258270.CrossRefGoogle Scholar
Miller, B. L., Seeley, W. W., Mychack, P., Rosen, H. J., Mena, I., & Boone, K. (2001). Neuroanatomy of the self: Evidence from patients with frontotemporal dementia. Neurology, 57(5), 817821.CrossRefGoogle ScholarPubMed
Mulhern, R. K., Merchant, T. E., Gajjar, A., Reddick, W. E., & Kun, L. E. (2004). Late neurocognitive sequelae in survivors of brain tumours in childhood. The Lancet Oncology, 5(7), 399408. doi:http://dx.doi.org/10.1016/S1470-2045(04)01507-4 CrossRefGoogle ScholarPubMed
Mulhern, R. K., Palmer, S. L., Reddick, W. E., Glass, J. O., Kun, L. E., Taylor, J., & Gajjar, A. (2001). Risks of young age for selected neurocognitive deficits in medulloblastoma are associated with white matter loss. Journal of Clinical Oncology, 19, 472479.CrossRefGoogle ScholarPubMed
Mulhern, R. K., Reddick, W. E., Palmer, S. L., Glass, J. O., Elkin, T. D., Kun, L. E., & Gaijar, A. (1999). Neurocognitive deficits in medulloblastoma survivors and white matter loss. Annals of Neurology, 46, 834841.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Mulhern, R. K., White, H. A., Glass, J. O., Kun, L. E., Leigh, L., Thompson, S. J., & Reddick, W. E. (2004). Attentional functioning and white matter integrity among survivors of malignant brain tumors of childhood. Journal of the International Neuropsychological Society, 10, 180189.CrossRefGoogle ScholarPubMed
Ness, K. K., Gurney, J. G., Zeltzer, L. K., Leisenring, W., Mulrooney, D. A., Nathan, P. C., & Mertens, A. C. (2008). The impact of limitations in physical, executive, and emotional function on health-related quality of life among adult survivors of childhood cancer: A report from the Childhood Cancer Survivor Study. Archives of Physical Medicine and Rehabilitation, 89(1), 128136. doi:10.1016/j.apmr.2007.08.123 CrossRefGoogle ScholarPubMed
Palmer, S. L., Armstrong, C., Onar-Thomas, A., Wu, S., Wallace, D., Bonner, M. J., & Gajjar, A. (2013). Processing speed, attention, and working memory after treatment for medulloblastoma: An international, prospective, and longitudinal study. Journal of Clinical Oncology, 31(28), 34943500. doi:10.1200/jco.2012.47.4775 CrossRefGoogle ScholarPubMed
Prigatano, G. P. (1996). Anosognosia. In B. J. Graham, P. M. Kenealy & M. J. C. Rogers (Eds.), The Blackwell dictionary of neuropsychology (pp. 8084). Cambridge, MA: Blackwell.Google Scholar
Prigatano, G. P. (2005a). Disturbances of self-awareness and rehabilitation of patients with traumatic brain injury: A 20-year perspective. Journal of Head Trauma Rehabilitation, 20(1), 1929.CrossRefGoogle ScholarPubMed
Prigatano, G. P. (2005b). Impaired self-awareness after moderately severe to severe traumatic brain injury. Acta Neurochirurgica. Supplement, 93, 3942.CrossRefGoogle ScholarPubMed
Prigatano, G. P., Hendin, B. A., & Heiserman, J. E. (2014). Denial or unawareness of cognitive deficit associated with multiple sclerosis? A case report. Journal of Clinical and Experimental Neuropsychology, 36(4), 335341. doi:10.1080/13803395.2014.890700 CrossRefGoogle ScholarPubMed
Reddick, W. E., Glass, J. O., Palmer, S. L., Wu, S., Gajjar, A., Langston, J. W., & Mulhern, R. K. (2005). Atypical white matter volume development in children following craniospinal irradiation. Neuro-oncology, 7, 1219.CrossRefGoogle ScholarPubMed
Reddick, W. E., White, H. A., Glass, J. O., Wheeler, G. C., Thompson, S. J., Gajjar, A., & Mulhern, R. K. (2003). Developmental model relating white matter volume to neurocognitive deficits in pediatric brain tumor survivors. Cancer, 97, 25122519.CrossRefGoogle ScholarPubMed
Robinson, K. E., Kuttesch, J. F., Champion, J. E., Andreotti, C. F., Hipp, D. W., Bettis, A., & Compas, B. E. (2010). A quantitative meta-analysis of neurocognitive sequelae in survivors of pediatric brain tumors. Pediatric Blood and Cancer, 55, 525531.CrossRefGoogle ScholarPubMed
Roth, R. M., Isquith, P. K., & Gioia, G. A. (2005). BRIEF-A: Behavior rating inventory of executive function - adult version. Lutz, FL: Psychological Assessment Resources.Google Scholar
Sherer, M., Bergloff, P., Levin, E., High, W. M. Jr., Oden, K. E., & Nick, T. G. (1998). Impaired awareness and employment outcome after traumatic brain injury. Journal of Head Trauma Rehabilitation, 13(5), 5261.CrossRefGoogle ScholarPubMed
Sherer, M., Hart, T., Nick, T. G., Whyte, J., Thompson, R. N., & Yablon, S. A. (2003). Early impaired self-awareness after traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 84(2), 168176. doi:10.1053/apmr.2003.50045 CrossRefGoogle ScholarPubMed
Sherer, M., Hart, T., Whyte, J., Nick, T. G., & Yablon, S. A. (2005). Neuroanatomic basis of impaired self-awareness after traumatic brain injury: Findings from early computed tomography. Journal of Head Trauma Rehabilitationl, 20(4), 287300.CrossRefGoogle ScholarPubMed
Solsnes, A. E., Skranes, J., Brubakk, A. M., & Lohaugen, G. C. (2014). Executive functions in very-low-birth-weight young adults: A comparison between self-report and neuropsychological test results. Journal of the International Neuropsychological Society, 20(5), 506515. doi:10.1017/s1355617714000332 CrossRefGoogle ScholarPubMed
Trahan, E., Pepin, M., & Hopps, S. (2006). Impaired awareness of deficits and treatment adherence among people with traumatic brain injury or spinal cord injury. Journal of Head Trauma Rehabilitation, 21(3), 226235.CrossRefGoogle ScholarPubMed
Turner, C. D., Rey-Casserly, C., Liptak, C. C., & Chordas, C. (2009). Late effects of therapy for pediatric brain tumor survivors. Journal of Child Neurology, 24, 14551463.CrossRefGoogle ScholarPubMed
Vriezen, E. R., & Pigott, S. E. (2002). The relationship between parental report on the BRIEF and performance-based measures of executive function in children with moderate to severe brain injury. Child Neuropsychology, 8, 296303.CrossRefGoogle Scholar
Wechsler, D. (2008). Wechsler Adult Intelligence Scale - Fourth edition technical and interpretive manual. San Antonio, TX: Pearson.Google Scholar
Wilson, K. R., Donders, J., & Nguyen, L. (2011). Self and parent ratings of executive functioning after adolescent traumatic brain injury. Rehabilitation Psychology, 56(2), 100106. doi:10.1037/a0023446 CrossRefGoogle ScholarPubMed
Wolfe, K. R., Walsh, K. S., Reynolds, N. C., Mitchell, F., Reddy, A. T., Paltin, I., & Madan-Swain, A. (2013). Executive functions and social skills in survivors of pediatric brain tumor. Child Neuropsychology, 19, 370384. doi:10.1080/09297049.2012.669470 CrossRefGoogle ScholarPubMed